精英家教网 > 高中数学 > 题目详情

已知x1,x2是函数f(x)=e-x-|lnx|的两个零点,则


  1. A.
    数学公式<x1x2<1
  2. B.
    数学公式<x1x2<1
  3. C.
    1<x1x2<e
  4. D.
    1<x1x2<10
B
分析:由题意f(x)=e-x-|lnx|的零点,即方程e-x=|lnx|的实数根.因此在同一坐标系内作出函数y=e-x与y=|lnx|的图象,并设
x1<x2,可得lnx2<-lnx1,推出x1x2<1.再根据x1且x2>1得到x1x2,由此即可得到本题的答案.
解答:函数f(x)=e-x-|lnx|的零点,即方程e-x=|lnx|的实数根
同一坐标系内作出函数y=e-x与y=|lnx|的图象,如图所示
不妨设x1<x2,可得0<x1<1且x2>1
∵0<-lnx1<1,∴lnx1>-1,可得x1
∵x2>1,∴x1x2
又∵y=e-x是减函数,可得lnx2<-lnx1
∴lnx2+lnx1<0,得lnx1x2<0,即x1x2<1
综上所述,可得<x1x2<1
故选:B
点评:本题给出含有指数和对数的基本初等函数,求函数的两个零点满足的条件,着重考查了指数函数、对数函数的图象与性质,以及函数的零点与方程根的关系等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、下列命题中:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②若f(x)是定义域为R的奇函数,对于任意的x∈R都有f(x)+f(2-x)=0,则函数f(x)的图象关于直线x=1对称;
③已知x1,x2是函数f(x)定义域内的两个值,且x1<x2,若f(x1)>f(x2),则f(x)是减函数;
④若f (x)是定义在R上的奇函数,且f (x+2)也为奇函数,则f (x)是以4为周期的周期函数.
其中正确的命题序号是
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1,x2是函数f(x)=ax2+bx+1(a,b∈R,a>0)的两个零点,函数f(x)的最小值为-a,记P={x|f(x)<0,x∈R}
(ⅰ)试探求x1,x2之间的等量关系(不含a,b);
(ⅱ)当且仅当a在什么范围内,函数g(x)=f(x)+2x(x∈P)存在最小值?
(ⅲ)若x1∈(-2,2),试确定b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①若函数f(x)的定义域为R,则g(x)=f(x)+f(-x)一定是偶函数;
②若f(x)是定义域为R的奇函数,对于任意的x∈R都有f(x)+f(2+x)=0,则函数f(x)的图象关于直线x=1对称;
③已知x1,x2是函数f(x)定义域内的两个值,且x1<x2,若f(x1)>f(x2),则f(x)是减函数;
④若f(x)是定义在R上的奇函数,且f(x+2)也为奇函数,则f(x)是以4为周期的周期函数.
其中正确的命题序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳模拟)已知x1x2是函数f(x)=e-x-|lnx|的两个零点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知x1,x2是函数f(x)=e-x-|lnx|的两个零点,则(  )

查看答案和解析>>

同步练习册答案