| A. | $\frac{4\sqrt{2}π}{3}$ | B. | 2$\sqrt{2}$π | C. | $\frac{8\sqrt{2}π}{3}$ | D. | 4$\sqrt{2}$π |
分析 由题意,点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径是四段大圆上的相等的弧,求出,∠AOB=$\frac{π}{3}$,利用弧长公式,即可得出结论.
解答 解:由题意,点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径是四段大圆上的相等的弧.
∵正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,
∴四棱柱的外接球的直径为其对角线,长度为$\sqrt{2+2+4}$=2$\sqrt{2}$,
∴四棱柱的外接球的半径为$\sqrt{2}$,∴∠AOB=$\frac{π}{3}$,
∴AB所在大圆,所对的弧长为$\frac{π}{3}•\sqrt{2}$=$\frac{\sqrt{2}}{3}π$,
∴点M经过的路径长为$\frac{4}{3}\sqrt{2}π$.
故选:A.
点评 本题考查弧长公式,考查学生的计算能力,确定点M经过的路径是四段大圆上的相等的弧是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3+\sqrt{3}$ | B. | $3+\sqrt{6}$ | C. | $1+2\sqrt{3}$ | D. | $1+2\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n-1 | B. | 2n | C. | 2n+1-1 | D. | 2n+1-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com