精英家教网 > 高中数学 > 题目详情
15.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,∠ACB=90°,$AC=\sqrt{2},BC=C{C_1}=1,P$是BC1上一动点,则A1P+PC的最小值是$\sqrt{5}$.

分析 连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,不难看出CP+PA1的最小值是A1C的连线.(在BC1上取一点与A1C构成三角形,因为三角形两边和大于第三边)由余弦定理即可求解.

解答 解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,
连A1C,则A1C的长度就是所求的最小值.
BC1=$\sqrt{2}$,A1C1=$\sqrt{2}$,A1B=2,通过计算可得∠A1C1P=90°
又∠BC1C=45°
∴∠A1C1C=135°
由余弦定理可求得A1C=$\sqrt{2+1-2×\sqrt{2}×1×(-\frac{\sqrt{2}}{2})}$=$\sqrt{5}$,
故答案为:$\sqrt{5}$.

点评 本题考查棱柱的结构特征,余弦定理的应用,考查学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知A,B两点之间有6条网线并联,它们能通过的最大信息量分别为1,2,2,3,3,4.现从中任取三条网线且使每条网线通过最大的信息量,设选取的三条网线由A到B可通过的最大信息总量为ξ.
(1)当ξ≥7时,则保证信息畅通,求线路信息畅通的概率;
(2)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在空间直角坐标系O-xyz中,平面OAB的法向量为$\overrightarrow n=({2,-2,1})$,O为坐标原点.已知P(-1,-3,8),则P到平面OAB的距离等于(  )
A.4B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(理科)四棱镜P-ABCD中,PD⊥平面ABCD,2AD=AB=BC=2a,AD∥BC,PD=$\sqrt{3}$a,∠DAB=60°.
(Ⅰ)若平面PAD∩平面PBC=l,求证:l∥BC;
(Ⅱ)求平面PAD与平面PBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=2,求B1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b是实数,如果矩阵A=$[\begin{array}{l}{3}&{a}\\{b}&{-2}\end{array}]$所对应的变换T把点(2,3)变成点(3,4).
(1)求a,b的值.
(2)若矩阵A的逆矩阵为B,求B2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(用空间向量坐标表示解答)已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,F在CC1上,且CF=1.
(1)求证:EF⊥A1C;
(2)求二面角C-AF-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面于点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为(  )
A.$\frac{4\sqrt{2}π}{3}$B.2$\sqrt{2}$πC.$\frac{8\sqrt{2}π}{3}$D.4$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=ax3+b(a,b∈R)是R上的奇函数,则  (  )
A.a∈R,b=0B.a∈R,b=1C.a=0,b∈RD.a=1,b∈R

查看答案和解析>>

同步练习册答案