精英家教网 > 高中数学 > 题目详情
10.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=2,求B1到平面ABC的距离.

分析 (1)要证B1C⊥AB,即证B1C⊥平面ABC1,由菱形的对角线垂直和线面垂直的性质,即可得证;
(2)由棱锥的体积公式,利用${V}_{{B}_{1}-ACB}$=${V}_{A-CB{B}_{1}}$,即可得到B1到平面ABC的距离.

解答 (1)证明:连结BC1,则BC1与B1C交于O,
∵侧面BB1C1C为菱形,∴B1C⊥BC1
∵AO⊥平面BB1C1C,∴B1C⊥AO
又∵BC1∩AO=O,
∴B1C⊥平面ABO,
由于AB?平面ABO,∴B1C⊥AB(5分)
(2)解:设点B1 到平面ABC 的距离为h,
∵侧面BB1C1C为菱形,∠CBB1=60°,BC=2,
∴△CBB1为等边三角形,
∴BC=BB1=B1C=2,BO=$\sqrt{3}$
∵AC⊥AB1,∴$OA=\frac{1}{2}{B_1}C=1,AC=\sqrt{2}$,
Rt△AOB中,AB=$\sqrt{A{O}^{2}+B{O}^{2}}$=2
∴S△ABC=$\frac{1}{2}×\sqrt{2}×\frac{\sqrt{14}}{2}$=$\frac{\sqrt{7}}{2}$,
∵${V}_{{B}_{1}-ACB}$=${V}_{A-CB{B}_{1}}$,
∴$\frac{1}{3}×\frac{\sqrt{7}}{2}×h=\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×1$,
∴h=$\frac{2\sqrt{21}}{7}$.
∴点B1 到平面ABC 的距离为$\frac{2\sqrt{21}}{7}$.(12分)

点评 本题考查线面垂直的性质和判定定理及运用,考查棱锥的体积公式和运用,考查B1到平面ABC的距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.假如由数据(3.1,2.9),(4.5,3.7),(5.6,6),(5.8,6.2),(6.0,7.4),(8.6,9.8)可以得出线性回归方程y=a+bx,则该直线经过的定点是以上点中的(5.6,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图四棱锥P-ABCD底面是矩形,PA⊥平面ABCD,PA=AB=1,$BC=\sqrt{2}$,E是BC上的点,
(Ⅰ)试确定E点的位置使平面PED⊥平面PAC,并证明你的结论;
(Ⅱ)在条件(Ⅰ)下,求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=$\sqrt{2}$,AB=AC.
(1)证明:AD⊥CE;
(2)设CE与平面ABE所成的角为45°,求二面角C-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,D、E分别是△ABC的边AB、AC上的点(D、E不与边的端点重合).已知线段AD、AB的长分别为m、n,AE、AC的长是关于x的方程x2-18x+mn=0的两个根.
(1)证明:C、B、D、E四点共圆;
(2)若∠A=90°,n=2m=8,求四边形CBDE外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,∠ACB=90°,$AC=\sqrt{2},BC=C{C_1}=1,P$是BC1上一动点,则A1P+PC的最小值是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四边形ABCD为⊙O的内接四边形,且BC=CD,其对角线AC与BD相交于点M.过点B作⊙O的切线交DC的延长线于点P.
(1)求证:AB•MD=AD•BM;
(2)若CP•MD=CB•BM,求证:AB=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(Ⅰ)在给定的坐标系中画出表中数据的散点图;两个变量y与x的回归模型中,分别选择了2个不同模型,模型①:$\stackrel{∧}{y}$=$\stackrel{∧}{b}x$+$\stackrel{∧}{a}$,模型②:$\stackrel{∧}{y}$=$\stackrel{∧}{c}$$\sqrt{x}$+$\stackrel{∧}{d}$,求$\stackrel{∧}{a}$,$\stackrel{∧}{b}$,$\stackrel{∧}{c}$,$\stackrel{∧}{d}$(精确到0.1);
(Ⅱ)比较两个不同的模型的相关指数R12,R22,指出哪种模型的拟合效果最好,并说明理由.
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b\overline{x}}$,其中$\overline{x}$,$\overline{y}$为样本平均数,令z=$\sqrt{x}$,则$\sum_{i=1}^{4}$ziyi=26.8,$\overline{z}$=1.8,$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{5}$≈2.2,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\stackrel{∧}{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

同步练习册答案