精英家教网 > 高中数学 > 题目详情
14.假如由数据(3.1,2.9),(4.5,3.7),(5.6,6),(5.8,6.2),(6.0,7.4),(8.6,9.8)可以得出线性回归方程y=a+bx,则该直线经过的定点是以上点中的(5.6,6).

分析 先求得样本中心点($\overline{x}$,$\overline{y}$),根据回归直线方程过样本中心点,即可求得直线经过的定点,

解答 解:由$\overline{x}$=$\frac{3.1+4.5+5.6+5.8+6.0+8.6}{6}$=5.6,
$\overline{y}$=$\frac{2.9+3.7+6+6.2+7.4+9.8}{6}$=6,
线性回归方程y=a+bx,过样本中心点($\overline{x}$,$\overline{y}$),即点(5.6,6),
故答案为:(5.6,6).

点评 本题考查回归直线方程,回归直线过样本中心点是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某车间生产甲、乙两种产品.已知生产甲产品1桶需要A原料1千克、B原料2千克;生产乙产品1桶需要A原料3千克、B原料1千克.生产计划中规定每天消耗的A原料不超过21千克、B原料不超过12千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元,每天生产甲、乙产品各多少桶可以获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}是等差数列,且a1+a5+a9=21,则a4+a6=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}-x-3,x>1}\end{array}\right.$,则f($\frac{1}{f(3)}$)的值为(  )
A.$\frac{15}{16}$B.-$\frac{27}{16}$C.$\frac{8}{9}$D.-$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.n∈N*,则(21-n)(22-n)…(100-n)等于(  )
A.${A}_{100-n}^{80}$B.${A}_{100-n}^{21-n}$C.${A}_{100-n}^{79}$D.${A}_{100}^{21-n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A,B两点之间有6条网线并联,它们能通过的最大信息量分别为1,2,2,3,3,4.现从中任取三条网线且使每条网线通过最大的信息量,设选取的三条网线由A到B可通过的最大信息总量为ξ.
(1)当ξ≥7时,则保证信息畅通,求线路信息畅通的概率;
(2)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集为R,A={x2,2x-1,-4},B={x-5,1-x,9}
(1)若x=-3,求∁R(A∩B);
(2)若{9}⊆A∩B,求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=DC,求异面直线PA,BC所成的角;
(2)求PB与平面PDC所成角大小;
(3)求二面角D-PB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=2,求B1到平面ABC的距离.

查看答案和解析>>

同步练习册答案