精英家教网 > 高中数学 > 题目详情
19.已知A,B两点之间有6条网线并联,它们能通过的最大信息量分别为1,2,2,3,3,4.现从中任取三条网线且使每条网线通过最大的信息量,设选取的三条网线由A到B可通过的最大信息总量为ξ.
(1)当ξ≥7时,则保证信息畅通,求线路信息畅通的概率;
(2)求ξ的数学期望.

分析 (1)从6条网线中随机取三网线,共有${C}_{6}^{3}$种情况,线路信息畅通的概率P(ξ≥7)=P(ξ=7)+P(ξ=8)+P(ξ=9)+P(ξ=10),由此能求出结果.
(2)由题意ξ的可能可值为5,6,7,8,9,10,分别求出相应的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)从6条网线中随机取三网线,共有${C}_{6}^{3}=20$种情况,
如图,∵1+2+4=2+2+3=1+3+3=7,
∴P(ξ=7)=$\frac{{C}_{1}^{1}{C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{2}{C}_{2}^{1}+{C}_{1}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{5}{20}$,
∵1+3+4=2+2+4=2+3+3=8,
∴P(ξ=8)=$\frac{{C}_{1}^{1}{C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{2}{C}_{1}^{1}+{C}_{2}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{5}{20}$,
∵2+3+4=9,
∴P(ξ=9)=$\frac{{C}_{2}^{1}{C}_{2}^{1}{C}_{1}^{1}}{{C}_{6}^{3}}$=$\frac{4}{20}$,
∵3+3+4=10,
∴P(ξ=10)=$\frac{{C}_{2}^{2}{C}_{1}^{1}}{{C}_{6}^{3}}$=$\frac{1}{20}$,
线路信息畅通的概率:
P(ξ≥7)=P(ξ=7)+P(ξ=8)+P(ξ=9)+P(ξ=10)
=$\frac{5}{20}+\frac{4}{20}+\frac{5}{20}+\frac{1}{20}$=$\frac{3}{4}$.
(2)由题意ξ的可能可值为5,6,7,8,9,10,
∵1+2+2=5,
∴P(ξ=5)=$\frac{{C}_{1}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{20}$,
∵1+2+3=6,
∴P(ξ=6)=$\frac{{C}_{1}^{1}{C}_{2}^{1}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{4}{20}$,
P(ξ=7)=$\frac{{C}_{1}^{1}{C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{2}{C}_{2}^{1}+{C}_{1}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{5}{20}$,
∵1+3+4=2+2+4=2+3+3=8,
∴P(ξ=8)=$\frac{{C}_{1}^{1}{C}_{2}^{1}{C}_{1}^{1}+{C}_{2}^{2}{C}_{1}^{1}+{C}_{2}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{5}{20}$,
∵2+3+4=9,
∴P(ξ=9)=$\frac{{C}_{2}^{1}{C}_{2}^{1}{C}_{1}^{1}}{{C}_{6}^{3}}$=$\frac{4}{20}$,
∵3+3+4=10,
∴P(ξ=10)=$\frac{{C}_{2}^{2}{C}_{1}^{1}}{{C}_{6}^{3}}$=$\frac{1}{20}$,
∴ξ的分布列为:

 ξ 5 6 7 8 9 10
 P $\frac{1}{20}$ $\frac{4}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{4}{20}$ $\frac{1}{20}$
∴Eξ=$5×\frac{1}{20}+6×\frac{4}{20}+7×\frac{5}{20}+8×\frac{5}{20}+9×\frac{4}{20}$+10×$\frac{1}{20}$=$\frac{15}{2}$.

点评 本题考查古典概型、离散型随机变量的分布列与数学期望等知识,考查或然与必然的数学思想方法,考查数据处理、运算求解能力和数学应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设x.y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=abx+y(a>0,b>0)的最大值为13,则a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在一次解题比赛中,甲、乙两组各四名同学答对题目数如茎叶图.

(1)当X=8,求乙组同学答对题目数的平均数和方差;
(2)当X=9,用抽签的方法分别从甲、乙两组各选取一名同学,记事件A为这两名同学答对题目数一样多,求事件A的概率.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{n}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数$\frac{a+3i}{1-2i}$是实数(a∈R,i为虚数单位),则实数a的值为(  )
A.$\frac{3}{2}$B.-6C.6D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.假如由数据(3.1,2.9),(4.5,3.7),(5.6,6),(5.8,6.2),(6.0,7.4),(8.6,9.8)可以得出线性回归方程y=a+bx,则该直线经过的定点是以上点中的(5.6,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=log2(2+2x)的值域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x+a
(1)当a=-$\frac{3}{2}$时,求函数y=f(x)图象上在点(3,f(3))处的切线方程;
(2)若方程f(x)=0有三个不等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在二面角α-AB-β中,线段AC?α,BD?β,AC⊥AB,BD⊥AB,AC=CD=4,AB=BD=2,则二面角α-AB-β的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,∠ACB=90°,$AC=\sqrt{2},BC=C{C_1}=1,P$是BC1上一动点,则A1P+PC的最小值是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案