分析 作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求a+b的最小值.
解答
解:由z=abx+y(a>0,b>0)得y=-abx+z,
作出可行域如图:
∵a>0,b>0,
∴直线y=-abx+z的斜率为负,且截距最大时,z也最大.
平移直线y=-abx+z,由图象可知当y=-abx+z经过点A时,
直线的截距最大,此时z也最大.
由$\left\{\begin{array}{l}{2x-y+2=0}\\{8x-y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4).
此时z=ab+4=13,
即ab=9,
则a+b$≥2\sqrt{ab}$=2$•\sqrt{9}$=2×3=6,
当且仅当a=b=3时取=号,
故最小值为6,
故答案为:6.
点评 本题主要考查线性规划的应用以及基本不等式的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.(θ为参数)$ | B. | $\left\{\begin{array}{l}x=-2+3cosθ\\ y=-1+3sinθ\end{array}\right.(θ为参数)$ | ||
| C. | $\left\{\begin{array}{l}x=2-3cosθ\\ y=1-3sinθ\end{array}\right.(θ为常数)$ | D. | $\left\{\begin{array}{l}x=-2-3cosθ\\ y=-1-3sinθ\end{array}\right.(θ为参数)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com