精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(2,3),且右焦点为F(2,0).
(1)求椭圆C的方程;
(2)设坐标原点为O,平行于OA的直线l与椭圆C有公共点,且OA与l的距离等于$\sqrt{13}$,求直线l的方程.

分析 (1)依题意设椭圆C的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)由已知得 c=2,2a=|AF|+|AF′|=8,由此能求出椭圆C的方程.
(2)平行于OA的直线l的方程为y=$\frac{3}{2}$x+t,联立直线与椭圆方程,得3x2+3bx+t2-12=0,由此利用根的判别式,结合OA与l的距离等于$\sqrt{13}$,即可求直线l的方程.

解答 解:(1)依题意设椭圆C的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)
且可知左焦点为F′(-2,0),
|AF|=$\sqrt{(2-2)^{2}+(3-0)^{2}}$=3,
|AF′|=$\sqrt{(-2-2)^{2}+(3-0)^{2}}$=5,
从而有c=2,2a=|AF|+|AF′|=8,
解得a=4,c=2,
又a2=b2+c2,所以b2=12,
故椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
(2)∵kOA=$\frac{3}{2}$,∴平行于OA的直线l的方程为y=$\frac{3}{2}$x+t,
联立直线与椭圆方程,得3x2+3bx+t2-12=0,
∵平行于OA的直线l与椭圆有公共点,∴△=9t2-12(t2-12)≥0,
解得-4$\sqrt{3}$≤t≤4$\sqrt{3}$
∵OA与l的距离等于$\sqrt{13}$,
∴$\frac{|t|}{\sqrt{\frac{9}{4}+1}}$=$\sqrt{13}$,
∴t=±$\frac{13}{2}$∈[-4$\sqrt{3}$,4$\sqrt{3}$]
∴直线l的方程为y=$\frac{3}{2}$x±$\frac{13}{2}$.

点评 本题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查点到直线的距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设△ABC的内角A、B、C所对的边为a、b、c,则下列命题正确的序号是①②③.
①若ab=c2,则C≤$\frac{π}{3}$
②若a+b=2c,则C≤$\frac{π}{3}$
③若a3+b3=c3,则C<$\frac{π}{2}$
④若(a+b)c<2ab,则C>$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A、B、C对应的边长分别为a、b、c,已知c(acosB-$\frac{1}{2}b}$)=a2-b2
(1)求角A;
(2)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中为偶函数的是(  )
A.y=x2sinxB.y=x2cosxC.y=|lnx|D.y=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个算法的程序框图如图所示,该程序输出的结果为(  )
A.$\frac{10}{11}$B.$\frac{5}{6}$C.$\frac{5}{11}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=-8x有相同的焦点,且双曲线过点M(3,$\sqrt{2}$),则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x.y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=abx+y(a>0,b>0)的最大值为13,则a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某算法的流程图如图所示,运行相应程序,输出S的值是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数$\frac{a+3i}{1-2i}$是实数(a∈R,i为虚数单位),则实数a的值为(  )
A.$\frac{3}{2}$B.-6C.6D.-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案