精英家教网 > 高中数学 > 题目详情
8.在△ABC中,内角A、B、C对应的边长分别为a、b、c,已知c(acosB-$\frac{1}{2}b}$)=a2-b2
(1)求角A;
(2)求sinB+sinC的取值范围.

分析 (1)由余弦定理化简已知可得a2=c2+b2-bc,根据余弦定理可求cosA,结合范围A∈(0,π),即可解得A的值.
(2)利用三角函数恒等变换的应用化简可得sinB+sinC=$\sqrt{3}$sin(B+$\frac{π}{6}$),结合范围B∈(0,$\frac{2π}{3}$),可求B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),利用正弦函数的性质即可解得sinB+sinC的取值范围.

解答 (本小题满分12分)
解:(1)∵$c({acosB-\frac{1}{2}b})={a^2}-{b^2}$,
由余弦定理得:a2+c2-b2-bc=2a2-2b2,可得:a2=c2+b2-bc,…3分
∵a2=c2+b2-2bccosA,
∴cosA=$\frac{1}{2}$,…5分
∵A∈(0,π),
∴$A=\frac{π}{3}$. …(6分)
(2)sinB+sinC=sinB+sin(A+B)=sinB+sinAcosB+cosAsinB…(7分)
=$\frac{3}{2}sinB+\frac{{\sqrt{3}}}{2}cosB=\sqrt{3}sin({B+\frac{π}{6}})$;  …(9分)
∵$B∈({0,\frac{2π}{3}})$,
∴$B+\frac{π}{6}∈({\frac{π}{6},\frac{5π}{6}})$,$sin({B+\frac{π}{6}})∈({\frac{1}{2},1}]$. …(11分)
∴sinB+sinC的取值范围为($\frac{{\sqrt{3}}}{2}$,$\sqrt{3}$].  …(12分)

点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=2+sinθ\end{array}\right.$(θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=-2.
(Ⅰ)求C1和C2在直角坐标系下的普通方程;
(Ⅱ)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,化工厂的主控制表盘高BC=1米,表盘底边距地面2米,设值班人员坐在椅子上时,眼睛距地面1.2米,问值班人员坐在什么位置上看表盘效果最佳?(即视角∠BAC最大)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示,在这些用户中,用电量落在区间[150,250)内的户数为52.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{OA}$=(4,3),$\overrightarrow{OB}$=(2,-1),O为坐标原点,P是直线AB上一点.
(Ⅰ)若点P是线段AB的中点,求向量$\overrightarrow{OA}$与向量$\overrightarrow{OP}$夹角θ的余弦值;
(Ⅱ)若点P在线段AB的延长线上,且|${\overrightarrow{AP}}$|=$\frac{3}{2}$|${\overrightarrow{PB}}$|,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在某海洋军事演习编队中,指挥舰00号与驱逐舰01号、02号的距离一直保持100海里的距离,当驱逐舰01号在指挥舰00号的北偏东15°,02号在00号南偏东45°时,则驱逐舰01号与02号相距(  )
A.100海里B.100$\sqrt{2}$海里C.100$\sqrt{3}$海里D.200海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}|{{{log}_2}x}|,0<x≤2\\ sin\frac{πx}{4},2<x≤10\end{array}$.
(I)设函数g(x)=f(x)-1,求函数g(x)的零点;
(II)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}•{x_2}}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(2,3),且右焦点为F(2,0).
(1)求椭圆C的方程;
(2)设坐标原点为O,平行于OA的直线l与椭圆C有公共点,且OA与l的距离等于$\sqrt{13}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(1)求证:BC⊥平面PAC;
(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N的位置,说明理由;并求AN与平面ABCD所成的角的正切值.

查看答案和解析>>

同步练习册答案