精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=2+sinθ\end{array}\right.$(θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=-2.
(Ⅰ)求C1和C2在直角坐标系下的普通方程;
(Ⅱ)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

分析 (Ⅰ)消调参数θ,即可得到普通方程,由极坐标方程即可直接得到普通方程;
(Ⅱ)根据韦达定理,即可求出弦MN中点的坐标,再化为极坐标即可.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}x=1+cosθ\\ y=2+sinθ\end{array}\right.$得$\left\{\begin{array}{l}x-1=cosθ\\ y-2=sinθ\end{array}\right.$,得 (x-1)2+(y-2)2=cos2θ+sin2θ=1,
所以C1的普通方程为(x-1)2+(y-2)2=1.
因为x=ρcosθ,所以C2的普通方程为x=-2.
(Ⅱ)由$\left\{\begin{array}{l}{({x-1})^2}+{({y-2})^2}=1\\ y=x\end{array}\right.$,
得x2-3x+2=0,
$\frac{{{x_1}+{x_2}}}{2}=\frac{3}{2}$,弦MN中点的横坐标为$\frac{3}{2}$,代入y=x得纵坐标为$\frac{3}{2}$,
弦MN中点的极坐标为:$({\frac{3}{2}\sqrt{2},\frac{π}{4}})$

点评 本题考查了把极坐标方程及参数方程化为直角坐标方程、极坐标与直角坐标的互化方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnax-$\frac{x-a}{x}$(a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$≥ln$\frac{{e}^{n}}{n!}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表所示的统计表格.
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
表中wi=xi3(i=1,2,3,4,5)(以下计算过程中的数据统一保留到小数点后第2位).
(1)在坐标系中,做出销售额y关于明星代言费x的回归类方程的散点图;
(2)根据散点图指出:y=a+blnx,y=c+dx3哪一个更适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(3)①已知这种产品的纯收益z(百万元)与x、y有如下关系:z=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式;
②试估计当x取何值时,纯收益z取最大值?
附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\overline{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-$\overline{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=x2-2lnx,g(x)=2ax-ax2,当x∈(1,+∞)时,f(x)>g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.记等比数列{an}前n项和为Sn,已知a1+a3=30,3S1,2S2,S3成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=3,bn+1-3bn=3an,求数列{bn}的前n项和Bn
(3)删除数列{an}中的第3项,第6项,第9项,…,第3n项,余下的项按原来的顺序组成一个新数列,记为{cn},{cn}的前n项和为Tn,若对任意n∈N*,都有$\frac{{T}_{n+1}}{{T}_{n}}$>a,试求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)的定义域为(0,+∞),f'(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f($\sqrt{x}$+1)>($\sqrt{x}$-1)f(x-1)的解集是(  )
A.(0,4)B.(1,4)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设△ABC的内角A、B、C所对的边为a、b、c,则下列命题正确的序号是①②③.
①若ab=c2,则C≤$\frac{π}{3}$
②若a+b=2c,则C≤$\frac{π}{3}$
③若a3+b3=c3,则C<$\frac{π}{2}$
④若(a+b)c<2ab,则C>$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A、B、C对应的边长分别为a、b、c,已知c(acosB-$\frac{1}{2}b}$)=a2-b2
(1)求角A;
(2)求sinB+sinC的取值范围.

查看答案和解析>>

同步练习册答案