精英家教网 > 高中数学 > 题目详情
9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表所示的统计表格.
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
表中wi=xi3(i=1,2,3,4,5)(以下计算过程中的数据统一保留到小数点后第2位).
(1)在坐标系中,做出销售额y关于明星代言费x的回归类方程的散点图;
(2)根据散点图指出:y=a+blnx,y=c+dx3哪一个更适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(3)①已知这种产品的纯收益z(百万元)与x、y有如下关系:z=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式;
②试估计当x取何值时,纯收益z取最大值?
附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\overline{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-$\overline{β}$$\overline{u}$.

分析 (1)把所给的五组数据作为五个点的坐标描到直角坐标系中,得到散点图,
(2)根据散点图,y=c+dx3,适合销售额y关于明星代言费x的回归方程,
(3)①令ω=x3,则y=c+dω,是y关于ω的线性回归方程,根据最小二乘法做出线性回归方程的系数,写出线性回归方程,$\overline{y}$=1.15+1.21ω=1.15+1.21x3,构造辅助函数,利用函数的导数,求得函数的单调,根据函数的单调性求得纯收益z取最大值.

解答 解:(1)散点图如下:

(2)根据散点图可知,y=c+dx3,适合销售额y关于明星代言费x的回归方程,
(3)①令ω=x3,则y=c+dω,是y关于ω的线性回归方程,
所以$\stackrel{^}{d}$=$\frac{\sum_{i=1}^{5}{ω}_{i}{y}_{i}-5\overline{ω}\overline{y}}{\sum_{i=1}^{5}({ω}_{i}-\overline{ω})^{2}}$≈1.21,$\stackrel{^}{c}$=$\overline{y}$-$\stackrel{^}{d}$•$\overline{ω}$≈1.15,
∴线性回归方程:$\overline{y}$=1.15+1.21ω=1.15+1.21x3
z=f(x)=0.2y-0.726x,
=0.2(1.15+1.21x3)-0.726x,
=0.242x3-0.726x+0.23,其中x∈[1.00,2.00],
②令z′=0.726x2-0.726≥0,x≥1.00,
故z=f(x)在区间[1.00,2.00]内单调递增,
所以估计当明星的代言费为x=2.00百万时,纯收益z取最大值.

点评 本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.第17届亚运会2014年9月19日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据列出2×2列联表.
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}是各项均为正数的等比数列,a1=1,5(a1+a2)=a1+a2+a3+a4
(1)求{an}的通项公式及前n项和Sn
(2)设Tn=$\frac{{a}_{1}}{{S}_{1}{S}_{2}}$+$\frac{{a}_{2}}{{S}_{2}{S}_{3}}$+…+$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为16cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线AB是以点E的圆心的圆的一部分,其中E(0,t)(0<t≤25),GF是圆的切线,且GF⊥AD,曲线BC是抛物线y=-ax2+50(a>0)的一部分,CD⊥AD,且CD恰好等于圆E的半径.
(1)若CD=30米,AD=24$\sqrt{5}$米,求t与a的值;
(2)若体育馆侧面的最大宽度DF不超过75米,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线(a-1)x+ay+1=0不过第二象限,则实数a的取值范围是(  )
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=2+sinθ\end{array}\right.$(θ为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=-2.
(Ⅰ)求C1和C2在直角坐标系下的普通方程;
(Ⅱ)已知直线l:y=x和曲线C1交于M,N两点,求弦MN中点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,化工厂的主控制表盘高BC=1米,表盘底边距地面2米,设值班人员坐在椅子上时,眼睛距地面1.2米,问值班人员坐在什么位置上看表盘效果最佳?(即视角∠BAC最大)

查看答案和解析>>

同步练习册答案