精英家教网 > 高中数学 > 题目详情
20.已知A地位于东经30°、北纬45°,B地位于西经60°、北纬45°,则A、B两地的球面距离与地球半径的比值为$\frac{π}{3}$.

分析 求出球心角,然后A、B两点的距离,求出两点间的球面距离,即可求出A、B两地的球面距离与地球半径的比值.

解答 解:地球的半径为R,在北纬45°,
而AB=R,所以A、B的球心角为:$\frac{π}{3}$,
所以两点间的球面距离是:$\frac{π}{3}$R,
所以A、B两地的球面距离与地球半径的比值为$\frac{π}{3}$
故答案为:$\frac{π}{3}$.

点评 本小题主要考查球面距离及相关计算、经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.甲、乙、丙三个同学同时做标号为A、B、C的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下列说法正确的是③
①三个题都有人做对;
②至少有一个题三个人都做对;
③至少有两个题有两个人都做对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{3}$x3-(1+$\frac{b}{2}$)x2+2bx在区间(-3,1)上是减函数,则实数b的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnax-$\frac{x-a}{x}$(a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+$\frac{1}{2}$+$\frac{1}{3}$…+$\frac{1}{n}$≥ln$\frac{{e}^{n}}{n!}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意点N在线段MA的延长线上,且$\overrightarrow{MA}$=2$\overrightarrow{AN}$.
(1)求点N的轨迹方程;
(2)求|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.B.12πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinωx(sinωx+$\sqrt{3}$cosωx),(ω>0)且函数y=f(x)的最小正周期为π.
(1)求f($\frac{π}{12}$)的值;
(2)求函数y=f(x+$\frac{π}{12}$)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表所示的统计表格.
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
表中wi=xi3(i=1,2,3,4,5)(以下计算过程中的数据统一保留到小数点后第2位).
(1)在坐标系中,做出销售额y关于明星代言费x的回归类方程的散点图;
(2)根据散点图指出:y=a+blnx,y=c+dx3哪一个更适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(3)①已知这种产品的纯收益z(百万元)与x、y有如下关系:z=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式;
②试估计当x取何值时,纯收益z取最大值?
附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\overline{β}$=$\frac{\sum_{i=1}^{n}{u}_{i}{v}_{i}-n\overline{u}\overline{v}}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\overline{α}$=$\overline{v}$-$\overline{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为100.

查看答案和解析>>

同步练习册答案