精英家教网 > 高中数学 > 题目详情
1.已知函数f(x),g(x)分别是定义域为R奇函数和偶函数,且f(x)-g(x)=2x-3x+1,则f(2)+g(2)=$-\frac{29}{4}$.

分析 根据函数奇偶性的性质建立方程组进行求解即可.

解答 解:∵函数f(x),g(x)分别是定义域为R奇函数和偶函数,且f(x)-g(x)=2x-3x+1,
∴f(-2)-g(-2)=2-2-3×(-2)+1=$\frac{1}{4}$+6+1=$\frac{29}{4}$,
即-f(2)-g(2)=$\frac{29}{4}$,
则f(2)+g(2)=-$\frac{29}{4}$,
故答案为:$-\frac{29}{4}$;

点评 本题主要考查函数值的计算,根据函数奇偶性的性质,利用方程组法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+(b+6)x-a+ab,且不等式f(x)>0的解集为(-2,3).
(1)求a,b的值;
(2)试问:c为何值时,不等式ax2+bx+c≤0的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个算法的程序框图如图所示,该程序输出的结果为(  )
A.$\frac{10}{11}$B.$\frac{5}{6}$C.$\frac{5}{11}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x.y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=abx+y(a>0,b>0)的最大值为13,则a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={0,1},B={a},A∪B={0,1,2},则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某算法的流程图如图所示,运行相应程序,输出S的值是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设i是虚数单位,若复数$\frac{5}{i-2}$的共轭复数为z,则|z|=(  )
A.i+2B.i-2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在一次解题比赛中,甲、乙两组各四名同学答对题目数如茎叶图.

(1)当X=8,求乙组同学答对题目数的平均数和方差;
(2)当X=9,用抽签的方法分别从甲、乙两组各选取一名同学,记事件A为这两名同学答对题目数一样多,求事件A的概率.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{n}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x+a
(1)当a=-$\frac{3}{2}$时,求函数y=f(x)图象上在点(3,f(3))处的切线方程;
(2)若方程f(x)=0有三个不等实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案