分析 (1)根据异面直线所成角的定义进行求解,
(2)根据直线和平面所成角的定义进行求解,
(3)根据二面角的定义作出二面角的平面角进行求解.
解答
(1)解:由已知得异面直线PA,BC所成的角为直线PA与AD所成的角为∠PAD=45°
(2)解:由已知得BC与平面PDC垂直,所以PB与平面PDC所成角为∠CPB=45°
(3)解:取PC中点E,连接DE,则DE⊥PC
由于BC⊥平面PDC,所以PBC⊥平面PDC,从而DE⊥平面C,做EF⊥PB于点F,连接DF,可得DF⊥PB
所以∠DFE为二面角D-PB-C的平面角.
计算可得DE=$\frac{{\sqrt{2}}}{2}$,EF=$\frac{1}{2}$.
所以二面角D-PB-C的正切值为$\sqrt{2}$.
点评 本题主要考查空间角的计算,涉及根据异面直线,线面角以及二面角的定义分别作出对应的平面角是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com