精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点M(0,2)关于直线y=-x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

分析 (1)由题意画出图形,求出M点关于直线y=-x的对称点,则a可求,再由△MF1F2为正三角形列式求得c,结合隐含条件求得b,则椭圆方程可求,
(2)设直线PB的方程可设为x=ky+4,联立方程组,设B(x1,y1),E(x2,y2),则A(x1,-y1),根据韦达定理可得y1+y2=-$\frac{16k}{2{k}^{2}+3}$,y1•y2=$\frac{24}{2{k}^{2}+3}$,由此能够证明直线AE恒过定点(1,0).

解答 解:(1)如图,点M(0,2)关于直线y=-x的对称点为(-2,0),
∵(-2,0)在椭圆上,∴a=2,
又△MF1F2为正三角形,
∴tan30°=$\frac{c}{2}$,c=2tan30°=$\frac{2\sqrt{3}}{3}$,
∴b2=a2-c2=4-$\frac{4}{3}$=$\frac{8}{3}$,
∴椭圆C的方程$\frac{{x}^{2}}{4}$+$\frac{3{y}^{2}}{8}$=1;
(2)∵P(4,0),
∴直线PB的方程可设为x=ky+4,
由$\left\{\begin{array}{l}{x=ky+4}\\{2{x}^{2}+3{y}^{2}=8}\end{array}\right.$,
得(2k2+3)y2+16ky+24=0,
∵△>0,
∴k2>$\frac{9}{2}$.
设B(x1,y1),E(x2,y2),则A(x1,-y1),
∴y1+y2=-$\frac{16k}{2{k}^{2}+3}$,y1•y2=$\frac{24}{2{k}^{2}+3}$
直线AE:y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),
∵x1y2+x2y1=2ky1y2+4(y1+y2)=$\frac{48k}{2{k}^{2}+3}$-$\frac{64k}{2{k}^{2}+3}$=-$\frac{16k}{2{k}^{2}+3}$=y1+y2
∴直线AE:y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),即为y=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-1)恒过定点(1,0).
∴AE恒过定点(1,0).

点评 本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设{an}是公比为正整数的等比数列,{bn}是等差数列,且a1a2a3=64,b1+b2+b3=-42,6a1+b1=2a3+b3=0.
(1)求数列{an}和{bn}的通项公式;
(2)设pn=$\left\{\begin{array}{l}{a_n},n=2k-1,k∈{N^*}\\{b_n},n=2k,k∈{N^*}\end{array}$,数列{pn}的前n项和为Sn
①试求最小的正整数n0,使得当n≥n0时,都有S2n>0成立;
②是否存在正整数m,n(m<n),使得Sm=Sn成立?若存在,请求出所有满足条件的m,n;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.n∈N*,则(21-n)(22-n)…(100-n)等于(  )
A.${A}_{100-n}^{80}$B.${A}_{100-n}^{21-n}$C.${A}_{100-n}^{79}$D.${A}_{100}^{21-n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集为R,A={x2,2x-1,-4},B={x-5,1-x,9}
(1)若x=-3,求∁R(A∩B);
(2)若{9}⊆A∩B,求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x,(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=DC,求异面直线PA,BC所成的角;
(2)求PB与平面PDC所成角大小;
(3)求二面角D-PB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α-y轴-β的大小等于30°.已知β内的曲线C′的方程是3(x-2$\sqrt{3}$)2+4y2-36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是(x-3)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点B(2,0),P是函数y=2x图象上不同于A(0,1)的一点,有如下结论:
①存在点P使得△ABP是等腰三角形;
②存在点P使得△ABP是锐角三角形;
③存在点P使得△ABP是直角三角形.
其中,正确结论的序号为(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x2+2x(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f5(x)在[1,2]上的最大值是(  )
A.210-1B.212-1C.310-1D.332-1

查看答案和解析>>

同步练习册答案