8£®Éè{an}Êǹ«±ÈΪÕýÕûÊýµÄµÈ±ÈÊýÁУ¬{bn}ÊǵȲîÊýÁУ¬ÇÒa1a2a3=64£¬b1+b2+b3=-42£¬6a1+b1=2a3+b3=0£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Éèpn=$\left\{\begin{array}{l}{a_n}£¬n=2k-1£¬k¡Ê{N^*}\\{b_n}£¬n=2k£¬k¡Ê{N^*}\end{array}$£¬ÊýÁÐ{pn}µÄǰnÏîºÍΪSn£®
¢ÙÊÔÇó×îСµÄÕýÕûÊýn0£¬Ê¹µÃµ±n¡Ýn0ʱ£¬¶¼ÓÐS2n£¾0³ÉÁ¢£»
¢ÚÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨m£¼n£©£¬Ê¹µÃSm=Sn³ÉÁ¢£¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐÂú×ãÌõ¼þµÄm£¬n£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓõȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©¢Ùpn=$\left\{\begin{array}{l}{a_n}£¬n=2k-1£¬k¡Ê{N^*}\\{b_n}£¬n=2k£¬k¡Ê{N^*}\end{array}$£¬¿ÉµÃÊýÁÐ{pn}µÄǰ2nÏîºÍS2n=£¨a1+a3+¡­+a2n-1£©+£¨b2+b4+¡­+b2n£©=$\frac{2}{3}¡Á{4}^{n}$-$\frac{2}{3}$-2n2-12n£®n=1£¬2£¬3ʱ£¬S2n£¼0£®n¡Ý4ʱ£¬¶¼ÓÐS2n£¾0£®¼´¿ÉµÃ³ö£®
¢ÚÓÉS1=2£¬S2=-12£¬S3=-4£¬S4=-22£¬S5=10£¬S6=-12£¬S7=116£®ÓÉ¢Ù¿ÉÖª£ºÊ¹µÃµ±n¡Ý4ʱ£¬¶¼ÓÐS2n£¾0³ÉÁ¢£¬¶øan=2n£¾0£®Òò´Ën¡Ý8ʱ£¬¶¼ÓÐSn£¾0£¬ÇÒSnµ¥µ÷µÝÔö£®¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¾0£¬µÈ²îÊýÁÐ{bn}µÄ¹«²îΪd£¬¡ßa1a2a3=64£¬b1+b2+b3=-42£¬6a1+b1=2a3+b3=0£®
¡à${a}_{2}^{3}$=64£¬3b2=-42£¬$\frac{6{a}_{2}}{q}$+b2-d=2a2q+b2+d=0£¬
ÁªÁ¢½âµÃa2=4£¬b2=-14£¬q=2£¬d=-2£®
¡àan=${a}_{2}{q}^{n-2}$=4¡Á2n-2=2n£¬bn=b2+£¨n-2£©d=-14-2£¨n-2£©=-2n-10£®
£¨2£©¢Ù¡ßpn=$\left\{\begin{array}{l}{a_n}£¬n=2k-1£¬k¡Ê{N^*}\\{b_n}£¬n=2k£¬k¡Ê{N^*}\end{array}$£¬
ÊýÁÐ{pn}µÄǰ2nÏîºÍS2n=£¨a1+a3+¡­+a2n-1£©+£¨b2+b4+¡­+b2n£©
=$\frac{2£¨{4}^{n}-1£©}{4-1}$-14n+$\frac{n£¨n-1£©}{2}¡Á£¨-4£©$=$\frac{2}{3}¡Á{4}^{n}$-$\frac{2}{3}$-2n2-12n£®
n=1£¬2£¬3ʱ£¬S2n£¼0£®n¡Ý4ʱ£¬¶¼ÓÐS2n£¾0£®¡à×îСµÄÕýÕûÊýn0=4£¬Ê¹µÃµ±n¡Ýn0ʱ£¬¶¼ÓÐS2n£¾0³ÉÁ¢£®
¢ÚÓÉS1=2£¬S2=-12£¬S3=-12+23=-4£¬S4=-22£¬S5=-22+25=10£¬
S6=-12£¬S7=-12+27=116£®
ÓÉ¢Ù¿ÉÖª£ºÊ¹µÃµ±n¡Ý4ʱ£¬¶¼ÓÐS2n£¾0³ÉÁ¢£¬¶øan=2n£¾0£®
Òò´Ën¡Ý8ʱ£¬¶¼ÓÐSn£¾0£¬ÇÒSnµ¥µ÷µÝÔö£®
¼ÙÉè´æÔÚÕýÕûÊým£¬n£¨m£¼n£©£¬Ê¹µÃSm=Sn³ÉÁ¢£¬
ÔòÈ¡m=2£¬n=6ʱ£¬Sm=Sn=-12³ÉÁ¢£¬
ÓÉn¡Ý8ʱ£¬¶¼ÓÐSn£¾0£¬ÇÒSnµ¥µ÷µÝÔö£¬S8=90£®Òò´ËSm=Sn²»¿ÉÄܳÉÁ¢£®
×ÛÉϿɵãºÖ»ÓÐm=2£¬n=6ʱ£¬Ê¹µÃSm=Sn³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢µÝÍÆ¹ØÏµ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÇúÏßy=cos2xÔڵ㣨$\frac{¦Ð}{4}$£¬0£©´¦µÄÇÐÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®1B£®-1C£®2D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹ýµã£¨-2£¬3£©£¬ÇÒÓëÖ±Ïß3x-4y+5=0´¹Ö±µÄÖ±Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®3x-4y+18=0B£®4x+3y-1=0C£®4x-3y+17=0D£®4x+3y+1=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª¼¯ºÏA={0£¬1}£¬B={a}£¬A¡ÈB={0£¬1£¬2}£¬ÔòʵÊýa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³¹¤³Ì¶ÓÔÚÄϺ£º£Óò½øÐÐÌÔìµØ¹¤³Ì£¬ÓûÔڱ߳¤Îª1ǧÃ×µÄÕýÈý½ÇÐ¸ABCµÄÍâΧѡÔñÒ»µãD£¨DÔÚÆ½ÃæABCÄÚ£©£¬½¨ÉèÒ»Ìõ¾üÓ÷ɻúÅܵÀAD£¬ÔÚµãD²âµÃB¡¢CÁ½µãµÄÊӽǡÏBDC=60¡ã£¬ÈçͼËùʾ£¬¼Ç¡ÏCBD=¦È£¬ÈçºÎÉè¼Æ¦È£¬Ê¹µÃ·É»úÅܵÀAD×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÉèiÊÇÐéÊýµ¥Î»£¬Èô¸´Êý$\frac{5}{i-2}$µÄ¹²éÊýΪz£¬Ôò|z|=£¨¡¡¡¡£©
A£®i+2B£®i-2C£®$\sqrt{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬ABΪ¡ÑOµÄÖ±¾¶£¬µãCÔÚ¡ÑOÉÏ£¬PA¡ÍÆ½ÃæABC£¬µãEΪÏß¶ÎPBµÄÖе㣬µãMΪBCµÄÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæEOM¡ÎÆ½ÃæPAC£»
£¨2£©ÇóÖ¤£ºÆ½ÃæPAC¡ÍÆ½ÃæPCB£»
£¨3£©ÈôPA=AB=2£¬¡ÏCAB=60¡ã£¬Çó¶þÃæ½ÇP-BC-AµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èô10x=2£¬10y=3£¬Ôò103x-y=$\frac{8}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãM£¨0£¬2£©¹ØÓÚÖ±Ïßy=-xµÄ¶Ô³ÆµãÔÚÍÖÔ²CÉÏ£¬ÇÒ¡÷MF1F2ΪÕýÈý½ÇÐΣ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬¹ýµãP£¨4£¬0£©µÄÖ±ÏßPB½»ÍÖÔ²CÓÚÁíÒ»µãE£¬Ö¤Ã÷£ºÖ±ÏßAEÓëxÖáÏཻÓÚ¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸