精英家教网 > 高中数学 > 题目详情
3.某工程队在南海海域进行填海造地工程,欲在边长为1千米的正三角形岛礁ABC的外围选择一点D(D在平面ABC内),建设一条军用飞机跑道AD,在点D测得B、C两点的视角∠BDC=60°,如图所示,记∠CBD=θ,如何设计θ,使得飞机跑道AD最长?

分析 首先利用正弦定理在△BCD中表示出BD,然后在△ABD中,利用余弦定理求出AD即可.

解答 解:在△BCD中,BC=1,∠BDC=60°,∠CBD=θ,由正弦定理知$\frac{BC}{sin60°}=\frac{BD}{sin(120°-θ)}$,
所以$BD=\frac{sin(120°-θ)}{sin60°}=cosθ+\frac{{\sqrt{3}}}{3}sinθ$,…(4分)
在△ABD中,AB=1,∠ABD=60°+θ,由余弦定理知AD2=AB2+BD2-2AB•BD•cos(60°+θ),…(8分)
AD2=${1^2}+{({cosθ+\frac{{\sqrt{3}}}{3}sinθ})^2}-2×1×({cosθ+\frac{{\sqrt{3}}}{3}sinθ})({\frac{1}{2}cosθ-\frac{{\sqrt{3}}}{2}sinθ})$=$1+\frac{4}{3}{sin^2}θ+\frac{{4\sqrt{3}}}{3}sinθcosθ$=$\frac{5}{3}+\frac{4}{3}sin({2θ-30°})$…(14分)
当2θ-30°=90°,θ=60°时,跑道AD最长.…(16分)

点评 本题考查了解三角形的实际应用;关键是利用两个定理得到三角形的边角关系,进一步解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)已知x>$\frac{3}{2}$,求y=$\frac{1}{2x-3}$+2x-1的最小值;
(2)已知m,n>0,且$\frac{1}{m}$+$\frac{4}{n}$=1,求t=m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.现有5名学生和2名教师站成一排合影,其中2名教师不相邻的排法共有(  )
A.720种B.1440种C.1800种D.3600种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知D是以点A(4,1),B(-1,-6),C(-2,3)为顶点的三角形区域(包括边界及内部).
(1)写出表示区域D的不等式组;
(2)设点B(-1,-6)、C(-2,3)在直线4x-3y-a=0的异侧,求a的取值范围;
(3)若目标函数z=kx+y(k<0)的最小值为-k-6,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个骰子(六个面分别标有1,2,3,4,5,6的玩具)连续掷2次,向上点数和为3的概率$\frac{1}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}是公比为正整数的等比数列,{bn}是等差数列,且a1a2a3=64,b1+b2+b3=-42,6a1+b1=2a3+b3=0.
(1)求数列{an}和{bn}的通项公式;
(2)设pn=$\left\{\begin{array}{l}{a_n},n=2k-1,k∈{N^*}\\{b_n},n=2k,k∈{N^*}\end{array}$,数列{pn}的前n项和为Sn
①试求最小的正整数n0,使得当n≥n0时,都有S2n>0成立;
②是否存在正整数m,n(m<n),使得Sm=Sn成立?若存在,请求出所有满足条件的m,n;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=3sinx的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数(  )
A.在区间[$\frac{π}{2}$,$\frac{3π}{2}$]上单调递减B.在区间[0,$\frac{3π}{2}$]上单调增
C.在区间[0,π]上单调递减D.在区间[0,π]上单调增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)的焦点为F,点P(x0,4)是C上一点,且|PF|=4.
(1)求点P的坐标和抛物线C的方程.
(2)抛物线C上异于点P的两点A(x1,y1)、B(x2,y2),若直线PA与直线PB的倾斜角互补,求证直线AB的斜率kAB的值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x,(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案