精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x,(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围.

分析 (1)由导数求出函数的单调区间,由单调性求出函数的最大值;
(2)由f(x1)≤g(x2)恒成立,等价于f(x1max≤g(x2max,通过讨论a的范围,确定g(x)的单调区间,求出g(x)的最大值,从而求出a的范围.

解答 解:(1)∵f(x)=lnx-x+1,x∈(0,+∞),
∴f′(x)=$\frac{1-x}{x}$,
∴当0<x<1时,f′(x)>0,
当x>1时,f′(x)<0,
∴f(x)≤f(1)=0,
∴f(x)的最大值为0;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,
依题意地f(x1max≤g(x2max,其中x1∈(0,+∞),x2∈[1,2],
由(1)知f(x1max=f(1)=0
而g′(x)=3(x-a)(x+a),(a>0),
①0<a≤1时,x∈[1,2],g′(x)≥0恒成立,
∴g(x)在[1,2]递增,此时g(x)max=g(2)=8-6a2
由题意得$\left\{\begin{array}{l}{8-{6a}^{2}≥0}\\{0<a≤1}\end{array}\right.$,
∴0<a≤1;
②1<a<2时,x∈(1,a),g′(x)<0,x∈(a,2),g′(x)>0,
∴g(x)在(1,a)递减,在(a,2)递增,
∴g(x)max=max{g(2),g(1)},
若g(1)>g(2),即1-3a2>8-6a2即a2>$\frac{7}{3}$,
此时1-3a2<0不合题意;
若g(1)≤g(2)即1-3a2≤8-6a2,即a2≤$\frac{7}{3}$,
∴1<a≤$\frac{\sqrt{21}}{3}$,
由题意得$\left\{\begin{array}{l}{8-{6a}^{2}≥0}\\{1<a≤\frac{\sqrt{21}}{3}}\end{array}\right.$,
∴1<a≤$\frac{2\sqrt{3}}{3}$,
③a≥2时,x∈[1,2],g′(x)≤0恒成立,
∴g(x)在[1,2]递减,
∴g(x)max=g(1)=1-3a2<0不合题意,
综上,a∈(0,$\frac{2\sqrt{3}}{3}$].

点评 本题考查了利用导数求函数的最值,运用等价转换思想求参数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某工程队在南海海域进行填海造地工程,欲在边长为1千米的正三角形岛礁ABC的外围选择一点D(D在平面ABC内),建设一条军用飞机跑道AD,在点D测得B、C两点的视角∠BDC=60°,如图所示,记∠CBD=θ,如何设计θ,使得飞机跑道AD最长?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a为双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$的实半轴长,则(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6展开式中的常数项等于-160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,若直线l1:x-2y-1=0和直线l2:$\left\{\begin{array}{l}{x=at}\\{y=2t-1}\end{array}\right.$(t为参数)平行,则常数a的值为(  )
A.4B.0C.2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若六进制数10k5(6)(k为正整数)化为二进制数为11101111(2),则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点M(0,2)关于直线y=-x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1则二面角V-AB-C的平面角的度数为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在棱长为4的正方体ABCD-A1B1C1D1中,M、分别是棱A1B1、A1D1的中点,
(1)求异面直线AM与CN所成角的余弦值;
(2)求点B到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的体积为(  )
A.$8\sqrt{3}$B.8C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案