精英家教网 > 高中数学 > 题目详情
16.如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α-y轴-β的大小等于30°.已知β内的曲线C′的方程是3(x-2$\sqrt{3}$)2+4y2-36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是(x-3)2+y2=9.

分析 设出所给的图形上的任意一点的坐标,根据两坐标系之间的坐标关系,写出这点的对应的点,根据所设的点满足所给的方程,代入求出方程.

解答 解:设3(x-2$\sqrt{3}$)2+4y2-36=0上的任意点为A(x,y)
A在平面α上的射影是(x,y)
∵直角坐标系x′Oy所在的平面为β,
直角坐标系xOy所在的平面为α,且二面角α-y轴-β的大小等于30°.
∴根据题意,得到x=$\frac{\sqrt{3}}{2}$x,y=y,
∵3(x-2$\sqrt{3}$)2+4y2-36=0,
∴3($\frac{2\sqrt{3}}{3}$x-2$\sqrt{3}$)2+4y2-36=0
∴(x-3)2+y2=9
故答案为:(x-3)2+y2=9.

点评 本题考查平行投影,考查两个坐标系之间的坐标关系,是中档题,解答关键是找出两个坐标间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,AB为⊙O的直径,点C在⊙O上,PA⊥平面ABC,点E为线段PB的中点,点M为BC的中点.
(1)求证:平面EOM∥平面PAC;
(2)求证:平面PAC⊥平面PCB;
(3)若PA=AB=2,∠CAB=60°,求二面角P-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系xOy中,若直线l1:x-2y-1=0和直线l2:$\left\{\begin{array}{l}{x=at}\\{y=2t-1}\end{array}\right.$(t为参数)平行,则常数a的值为(  )
A.4B.0C.2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点M(0,2)关于直线y=-x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,三棱锥V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1则二面角V-AB-C的平面角的度数为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图四棱锥P-ABCD底面是矩形,PA⊥平面ABCD,PA=AB=1,$BC=\sqrt{2}$,E是BC上的点,
(Ⅰ)试确定E点的位置使平面PED⊥平面PAC,并证明你的结论;
(Ⅱ)在条件(Ⅰ)下,求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在棱长为4的正方体ABCD-A1B1C1D1中,M、分别是棱A1B1、A1D1的中点,
(1)求异面直线AM与CN所成角的余弦值;
(2)求点B到平面AMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,D、E分别是△ABC的边AB、AC上的点(D、E不与边的端点重合).已知线段AD、AB的长分别为m、n,AE、AC的长是关于x的方程x2-18x+mn=0的两个根.
(1)证明:C、B、D、E四点共圆;
(2)若∠A=90°,n=2m=8,求四边形CBDE外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=1-x+lnx
(Ⅰ)求f(x)的最大值;
(Ⅱ)对任意的x1,x2∈(0,+∞)且x2<x1是否存在实数m,使得$mx_2^2$-$mx_1^2$-x1lnx1+x2lnx2>0恒成立;若存在,求出m的取值范围;若不存在,说明理由:
(Ⅲ)若正数数列{an}满足$\frac{1}{{{a_{n+1}}}}$=$\frac{(1+{a}_{n}){a}_{n}}{2{a}_{n}^{2}}$,且a1=$\frac{1}{2}$,数列{an}的前n项和为Sn,试比较2${e^{S_n}}$与2n+1的大小并加以证明.

查看答案和解析>>

同步练习册答案