精英家教网 > 高中数学 > 题目详情
3.(理科)四棱镜P-ABCD中,PD⊥平面ABCD,2AD=AB=BC=2a,AD∥BC,PD=$\sqrt{3}$a,∠DAB=60°.
(Ⅰ)若平面PAD∩平面PBC=l,求证:l∥BC;
(Ⅱ)求平面PAD与平面PBC所成二面角的大小.

分析 (Ⅰ)由BC∥平面PAD,推导出l∥BC.
(Ⅱ)连结BD,以D为原点,分别以DA,DB,DP所在的直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面PAD与平面PBC所成二面角的大小.

解答 证明:(Ⅰ)∵AD∥BC,AD?平面PAD,BC?平面PAD,
∴BC∥平面PAD,
又平面PBC过BC,且与平面PAD交于l,
∴l∥BC.
解:(Ⅱ)连结BD,△ABD中,AD=a,AB=2a,∠DAB=60°,
由余弦定理,得:BD2=DA2+AB2-2DA•AB•cos60°=3a2
∴BD=$\sqrt{3}a$,
∴AB2=AD2+BD2,∴△ABD为直角三角形,且AD⊥BD,
∵PD⊥平面ABCD,
∴以D为原点,分别以DA,DB,DP所在的直线为x,y,z轴,建立空间直角坐标系,
∵BD⊥平面PAD,∵$\overrightarrow{BD}$=(0,$\sqrt{3}a$,0)是平面PAD的法向量,
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
P(0,0,$\sqrt{3}a$),B(0,$\sqrt{3}a$,0),C(-2a,$\sqrt{3}a$,0),
∴$\overrightarrow{PB}$=(0,$\sqrt{3}a$,-$\sqrt{3}a$),$\overrightarrow{BC}$=(-2a,0,0),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}ay-\sqrt{3}az=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-2ax=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,1,1).
∴cos<$\overrightarrow{BD},\overrightarrow{n}$>=$\frac{\overrightarrow{BD}•\overrightarrow{n}}{|\overrightarrow{BD}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}a}{\sqrt{3}a•\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴平面PAD与平面PBC所成二面角的大小为45°.

点评 本题考查异面直线平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若复数$\frac{a+3i}{1-2i}$是实数(a∈R,i为虚数单位),则实数a的值为(  )
A.$\frac{3}{2}$B.-6C.6D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在二面角α-AB-β中,线段AC?α,BD?β,AC⊥AB,BD⊥AB,AC=CD=4,AB=BD=2,则二面角α-AB-β的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:AB⊥AC;
(2)证明:DF⊥AE;
(3)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为$\frac{{\sqrt{14}}}{14}$?若存在,说明点D的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=$\sqrt{2}$,AB=AC.
(1)证明:AD⊥CE;
(2)设CE与平面ABE所成的角为45°,求二面角C-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)证明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,∠ACB=90°,$AC=\sqrt{2},BC=C{C_1}=1,P$是BC1上一动点,则A1P+PC的最小值是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是(  )
A.$3+\sqrt{3}$B.$3+\sqrt{6}$C.$1+2\sqrt{3}$D.$1+2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{x^2}{2}$-alnx(a≠0).
(1)讨论f(x)的单调性和极值;
(2)证明:当a>0时,若f(x)存在零点,则f(x)在区间(1,$\sqrt{e}$]上仅有一个零点.

查看答案和解析>>

同步练习册答案