精英家教网 > 高中数学 > 题目详情
已知直角坐标平面内点A(x,y)到点F1(-1,0)与点F2(1,0)的距离之和为4.
(1)试求点A的轨迹M的方程;
(2)若斜率为
1
2
的直线l与轨迹M交于C、D两点,点P(1,
3
2
)
为轨迹M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.
(1)由题知|AF1|+|AF2|=4,|F1F2|=2,则|AF1|+|AF2|>|F1F2|
由椭圆的定义知点A轨迹M是椭圆,其中a=2,c=1.
因为b2=a2-c2=3,
所以,轨迹M的方程为
x2
4
+
y2
3
=1

(2)设直线l的方程为:y=
1
2
x+b
,C(x1,y1),D(x2,y2
联立直线l'的方程与椭圆方程,消去y可得:3x2+4(
1
2
x+b)2=12

化简得:x2+bx+b2-3=0
当△>0时,即,b2-4(b2-3)>0,也即|b|<2时,直线l'与椭圆有两交点,
由韦达定理得:
x1+x2=-b
x1x2=b2-3

所以,k1=
y1-
3
2
x1-1
=
1
2
x1+b-
3
2
x1-1
k2=
y2-
3
2
x2-1
=
1
2
x2+b-
3
2
x2-1

则k1+k2=
1
2
x1+b-
3
2
x1-1
+
1
2
x2+b-
3
2
x2-1
=
x1x2+(b-2)(x1+x2)+3-2b
(x1-1)(x2-1)
=
b2-3+(b-2)(-b)+3-2b
(x1-1)(x2-1)
=0

所以,k1+k2为定值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(Ⅱ)设m=2,过点D(0,4)的直线l与曲线C交于M,N两点,O为坐标原点,若∠OMN为直角,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知△ABC的顶点A(0,-1),B(0,1),直线AC,直线BC的斜率之积等于m(m0),求顶点C的轨迹方程,并判断轨迹为何种圆锥曲线.
(2)已知圆M的方程为:(x+1)2+y2=(2a)2(a>0,且a1),定点N(1,0),动点P在圆M上运动,线段PN的垂直平分线与直线MP相交于点Q,求点Q轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,直线l:y=x+2与原点为圆心,以椭圆C的短轴长为直径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,2)的直线l1与椭圆C交于G,H两点.设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.如果存在,求出实数m的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率e=
3
2
,短轴长为2,点A(x1,y1),B(x2,y2)是椭圆上的两点,
m
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
,且
m
n
=0

(1)求椭圆方程;
(2)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率;
(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2为椭圆x2+
y2
2
=1
上的两个焦点,A,B是过焦点F1的一条动弦,则△ABF2的面积的最大值为(  )
A.
2
2
B.
2
C.1D.2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点B是椭圆C的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+2
2
=0的距离为3.
(1)求椭圆方程;
(2)试问是否存在斜率为k(k≠0)的直线l,使l与椭圆M有两个不同的交点B、C,且|AB|=|AC|?若存在,求出k的范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案