精英家教网 > 高中数学 > 题目详情
如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.
(Ⅰ)易知A(-a,0),B(a,0),F1(-c,0),
AF1
F1B
=(a-c,0)•(a+c)=1
,∴a2-c2=b2=1,
e=
3
2
,∴e2=
c2
a2
=
a2-1
a2
=
3
4
,解得a2=4,
所求椭圆方程为:
x2
4
+y2=1

(Ⅱ)设P(x0,y0),则Q(x0,2y0)(x0≠±2),
kAQ=
2y0
x0+2
,所以直线AQ方程:y=
2y0
x0+2
(x+2)

M(2,
8y0
x0+2
)
,则N(2,
4y0
x0+2
)

kQN=
4y0
x0+2
-2y0
2-x0
=
2x0y0
x02-4

又点P的坐标满足椭圆方程,则x02+4y02=4
所以x02-4=-4y02,∴kQN=
2x0y0
x02-4
=
2x0y0
-4y02
=-
x0
2y0

∴直线QN的方程:y-2y0=-
x0
2y0
(x-x0)

化简整理得到:x0x+2y0y=x02+4y02=4,即x0x+2y0y=4,
所以点O到直线QN的距离d=
4
x02+4y02
=2

故直线QN与AB为直径的圆O相切.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M为CD的中点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)过M作AB的垂线,垂足为N,若存在正常数λ0,使
MP
0
PN
,且P点到A、B的距离和为定值,求点P的轨迹E的方程;
(Ⅲ)过(0,
1
2
)的直线与轨迹E交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直线l:x-y+9=0上任取一点M,过M作以F1(-3,0),F2(3,0)为焦点的椭圆,当M在什么位置时,所作椭圆长轴最短?并求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角坐标平面内点A(x,y)到点F1(-1,0)与点F2(1,0)的距离之和为4.
(1)试求点A的轨迹M的方程;
(2)若斜率为
1
2
的直线l与轨迹M交于C、D两点,点P(1,
3
2
)
为轨迹M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,F是抛物线E:y2=4x的焦点.
(Ⅰ)过F作直线l交抛物线E于P,Q两点,求
OP
OQ
的值;
(Ⅱ)过点T(t,0)作两条互相垂直的直线分别交抛物线E于A,B,C,D四点,且M,N分别为线段AB,CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且
AP
=
8
5
PQ

(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
3
y+3=0相切,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设直线l交曲线C于A,B两点,线段AB的中点为D(2,-1),求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
4
+
y2
2
=1
,过程P(1,1)作直线l,与椭圆交于A,B两点,且点P是线段AB的中点,则直线l的斜率为______.

查看答案和解析>>

同步练习册答案