精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
2
=1
,过程P(1,1)作直线l,与椭圆交于A,B两点,且点P是线段AB的中点,则直线l的斜率为______.
设A(x1,y1)、B(x2,y2),
∵A、B两点在椭圆
x2
4
+
y2
2
=1
上,∴
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1

两式相减可得:
1
4
(x12-x22)+
1
2
(y12-y22)=0,化简得
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)

又∵点P(1,1)是AB的中点,∴x1+x2=2,y1+y2=2,
因此可得直线l的斜率k=
y1-y2
x1-x2
=-
x1+x2
2(y1+y2)
=-
1
2

故答案为:-
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:椭圆
x2
a2
+
y2
b2
=1
(a>b>0),过点A(-a,0),B(0,b)的直线倾斜角为
π
6
,原点到该直线的距离为
3
2

(1)求椭圆的方程;
(2)斜率大于零的直线过D(-1,0)与椭圆交于E,F两点,若
ED
=2
DF
,求直线EF的方程;
(3)是否存在实数k,直线y=kx+2交椭圆于P,Q两点,以PQ为直径的圆过点D(-1,0)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点A的坐标是(0,-1),且右焦点Q到直线x-y+2
2
=0的距离为3.
(1)求椭圆方程;
(2)试问是否存在斜率为k(k≠0)的直线l,使l与椭圆M有两个不同的交点B、C,且|AB|=|AC|?若存在,求出k的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,长轴长为4
5
,直线l:y=x+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)若直线l不经过椭圆上的点M(4,1),求证:直线MA,MB的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为x2=2py(p>0),焦点F为(0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

【理科】抛物线顶点在原点,焦点是圆x2+y2-4x=0的圆心.
(1)求抛物线的方程;
(2)直线l的斜率为2,且过抛物线的焦点,与抛物线交于A、B两点,求弦AB的长;
(3)过点P(1,1)引抛物线的一条弦,使它被点P平分,求这条弦所在的直线方程.

查看答案和解析>>

同步练习册答案