精英家教网 > 高中数学 > 题目详情
9.设集合M={0,1,3},N={x|x2-3x+2≤0},则M∩N=(  )
A.{1}B.{2}C.{0,1}D.{1,2}

分析 先分另求出集合M和N,由此能求出M∩N.

解答 解:∵M={0,1,3},
N={x|x2-3x+2≤0}={x|1≤x≤2},
∴M∩N={1}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则k=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-m|(m>0),g(x)=2f(x)-f(x+m),g(x)的最小值为-1.
(Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求证:f(ab)>|a|f($\frac{b}{a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-(m-2)x-2m
(1)当m=4且x∈[2,3]时,求函数f(x)的值域;
(2)若m∈[1,3]时,f(x)≤0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)${(\frac{2}{3})^0}+{2^{-2}}×{(\frac{16}{9})^{\frac{1}{2}}}+(lg8+lg125)$;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程与圆${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=f'(2){x^3}+\frac{1}{x}$,则f(2)=(  )
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,且f(x+1)为奇函数.若f(2)=1,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.1B.2014C.0D.-2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线:x-y+m=0与圆C:x2+y2=4相交于A,B两点,且弦AB的长为2$\sqrt{3}$,求实数m的值.

查看答案和解析>>

同步练习册答案