精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且经过点M(-2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
1
y1
+
1
y2
=
1
yP
+
1
yQ
.求△ABM的面积.
(Ⅰ)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且经过点M(-2,0).
∴a=2,
c
a
=
2
2
,∴c=
2
.                        …(2分)
∵a2=b2+c2,∴b=
2
.                            …(3分)
椭圆方程为
x2
4
+
y2
2
=1
.                                      …(5分)
(Ⅱ)因为直线l的斜率为1,可设l:y=x+m,…(6分)
x2+2y2=4
y=x+m
,消y得3x2+4mx+2m2-4=0,…(7分)
由△>0,得m2<6.
因为A(x1,y1),B(x2,y2),所以x1+x2=-
4m
3
x1x2=
2m2-4
3
.                        …(8分)
设直线MA:y=
y1
x1+2
(x+2)
,则yP=
6y1
x1+2
;同理yQ=
6y2
x2+2
.…(9分)
因为 
1
y1
+
1
y2
=
1
yP
+
1
yQ
,所以 
6
6y1
+
6
6y2
=
x1+2
6y1
+
x2+2
6y2
,即
x1-4
6y1
+
x2-4
6y2
=0
.     …(10分)
所以 (x1-4)y2+(x2-4)y1=0,
所以 (x1-4)(x2+m)+(x2-4)(x1+m)=0,
所以2x1x2+m(x1+x2)-4(x1+x2)-8m=0,
所以2•
2m2-4
3
+m(-
4m
3
)-4(-
4m
3
)-8m=0

所以 
-8-8m
3
=0
,所以 m=-1∈(-
6
6
)
.              …(12分)
所以 x1+x2=
4
3
x1x2=-
2
3

设△ABM的面积为S,直线l与x轴交点记为N,
所以S=
1
2
•|MN|•|y1-y2|=
3
2
•|x1-x2|=
3
2
(x1+x2)2-4x1x2
=
10
.…(13分)
所以△ABM的面积为
10
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案