精英家教网 > 高中数学 > 题目详情
设f(x)=
ax
+xlnx,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线的斜率;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M.
分析:(1)当a=2时,f(x)=
2
x
+xlnx,根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率;
(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,利用导数求出函数g(x)的最大值和最小值,然后求出g(x)max-g(x)min,从而求出满足条件的最大整数M.
解答:解:(1)当a=2时,f(x)=
2
x
+xlnx,f′(x)=-
2
x2
+lnx+1,
∴f(1)=2,f′(1)=-1.
∴y=f(x)在x=1处的切线斜率为-1;
(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立
g(x)=x3-x2-3,g′(x)=3x2-2x=3x(x-
2
3

当x∈(0,
2
3
)时,g′(x)<0,当x∈(
2
3
,2)时,g′(x)>0,
∴g(x)min=g(
2
3
)=-
85
27
,g(x)max=g(2)=1
g(x)max-g(x)min=
112
27

∴满足条件的最大整数M=4
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及函数恒成立问题和利用导数求闭区间上函数的最值,同时考查了转化与化归的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是
①②③
①②③
.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax(a>0且a≠1),g(x)为f(x)的反函数.
(1)当a=e(e为自然对数的底数)时,求函数y=f(x)-x的最小值;
(2)试证明:当f(x)与g(x)的图象的公切线为一、三象限角平分线时,a=e
1e

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)设函数f(x)=ax+3a(其中a>0且a≠1).
(1)求函数y=f-1(x)的解析式;
(2)设g(x)=loga(x-a),是否存在实数a,使得当x∈[a+2,a+3]时,恒有|f-1(x)+g(x)|≤1成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax+3a(其中a>0且a≠1).
(1)求函数y=f-1(x)的解析式;
(2)设g(x)=loga(x-a),是否存在实数a,使得当x∈[a+2,a+3]时,恒有|f-1(x)+g(x)|≤1成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆一中高三(上)入学摸底数学试卷(理科)(解析版) 题型:解答题

设f(x)=ax(a>0且a≠1),g(x)为f(x)的反函数.
(1)当a=e(e为自然对数的底数)时,求函数y=f(x)-x的最小值;
(2)试证明:当f(x)与g(x)的图象的公切线为一、三象限角平分线时,

查看答案和解析>>

同步练习册答案