| A. | d1+d2=d1•d2 | B. | d1-d2=d1•d2 | C. | d12+d22=d1•d2 | D. | d12-d22=d1•d2 |
分析 求出抛物线的焦点F(1,0),准线x=-1,再设y=k(x-1)代入y2=4x得k2x2-2(k2+2)x+k2=0,由抛物线定义可得|AF|=x1+1,|BF|=x2+1,从而可得结论.
解答 解:抛物线的焦点F(1,0),准线x=-1,
设y=k(x-1),把它代入y2=4x得k2x2-2(k2+2)x+k2=0,
设A(x1,y1),B(x2,y2),则x1x2=1
由抛物线定义可得|AF|=x1+1,|BF|=x2+1,
∴d1+d2=(x1+1)+(x2+1)=(x1+x2)+2,d1d2=(x1+1)(x2+1)=x1x2+(x1+x2)+1=(x1+x2)+2
∴d1+d2=d1d2.
故选:A.
点评 本题考查抛物线过焦点的性质,解题的关键是设出过焦点的直线方程与抛物线方程联立方程组.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 5 | D. | $\frac{15}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com