精英家教网 > 高中数学 > 题目详情

袋中装有编号为的球个,编号为的球个,这些球的大小完全一样。
(1)从中任意取出四个,求剩下的四个球都是号球的概率;
(2)从中任意取出三个,记为这三个球的编号之和,求随机变量的分布列及其数学期望.

(1);
(2) 分布列如下:


3
4
5
6
P




 
数学期望为

解析试题分析:(1) 记 “任意取出四个,剩下的四个球都是1号球”为事件A, 则,(2) 的可能取值有3,4,5,6,则,,,
,数学期望.
试题解析:(1)记 “任意取出四个,剩下的四个球都是1号球”为事件A,

(2) 的可能取值有3,4,5,6,则
,,
,,
概率分布列如下:


3
4
5
6
P




数学期望.
考点:超几何分布的概率分布列与数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在区间内随机取两个数a、b, 则使得函数有零点的概率为          

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该场地停车,两人停车都不超过4小时.
(Ⅰ)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费6元的概率;
(Ⅱ)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲乙二人停车付费之和为28元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;
(2)分别求出甲、乙两组数据的方差
并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.
(注:方差为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示.

 
CD段
EF段
GH段
堵车概率



平均堵车时间
(单位:小时)

2
1
 
经调查发现,堵车概率上变化,上变化.
在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计段平均堵车时间,调查了100名走甲线路的司机,得到下表数据.
堵车时间(单位:小时)
频数
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24
 
(1)求段平均堵车时间的值;
(2)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是    

查看答案和解析>>

同步练习册答案