精英家教网 > 高中数学 > 题目详情
20.如图,直四棱柱ABCD-A1B1C1D1,底面ABCD为平行四边形,且AB=AD=1,AA1=$\frac{{\sqrt{6}}}{2}$,∠ABC=60°.
(1)求证:AC⊥BD1
(2)求四面体D1-AB1C的体积.

分析 (1)连结BD、AC相交于O.证明AC⊥BD,BB1⊥AC,推出AC⊥平面BB1D1D,即可证明AC⊥BD1
(2)利用等体积法转化求解即可.

解答 解:(1)证明:连结BD、AC相交于O.
因为四边形ABCD为平行四边形,且AB=AD,
所以四边形ABCD为菱形,则AC⊥BD….(2分)
由直四棱柱ABCD-A1B1C1D1
所以BB1⊥平面ABCD,
可知BB1⊥AC,….(4分)
则AC⊥平面BB1D1D,又BD1?平面BB1D1D,
则AC⊥BD1…(6分)
(2)${V_{{D_1}A{B_1}C}}={V_{ABCD-{A_1}{B_1}{C_1}{D_1}}}-{V_{{B_1}ABC}}-{V_{{D_1}ACD}}-{V_{{A_1}{A_1}{B_1}{D_1}}}-{V_{C{C_1}{B_1}{D_1}}}$
=${V_{ABCD-{A_1}{B_1}{C_1}{D_1}}}-4{V_{{B_1}ABC}}=\frac{{\sqrt{3}}}{2}•\frac{3}{{\sqrt{6}}}-4•\frac{1}{3}•\frac{{\sqrt{3}}}{4}•\frac{3}{{\sqrt{6}}}=\frac{{\sqrt{2}}}{4}$
…(12分)

点评 本题考查直线与平面垂直的判定定理的应用,几何体的体积的求法,考查计算能力以及分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)当{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在以A,B,C,D,E为顶点的五面体中,O为AB的中点,AD⊥平面ABC,AD∥BE,AC⊥CB,$AC=2\sqrt{2}$,AB=2BE=4AD=4.
(1)在图中过点O作平面α,使得α∥平面CDE,并说明理由;
(2)求直线DE与平面CBE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设f(x)=lnx,f'(x)是f(x)的导数,若$g(x)=f(x)-\frac{2}{f'(x)}-a$有两个不相同的零点,则实数a的取值范围是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v(米/单位时间),单位时间内用氧量为v2;②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为$\frac{v}{2}$(米/单位时间),单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y.
(1)将y表示为v的函数;
(2)试确定下潜速度v,使总的用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线过点(2,$\sqrt{3}$),且一条渐近线方程为y=$\frac{1}{2}$x,则该曲线的标准方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn满足an+1=2Sn+6,且a1=6.
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,证明:$\frac{1}{3•{T}_{1}}$+$\frac{1}{{3}^{2}•{T}_{2}}$+$\frac{1}{{3}^{3}•{T}_{3}}$+…+$\frac{1}{{3}^{n}•{T}_{n}}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知m>0,n>0,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值为2,求m2+$\frac{n^2}{4}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,BC=2AD=4.AB=2BC=2CD=2$\sqrt{5}$,M为棱PC上一点.
(1)求证:平面BDM⊥平面PAD;
(2)当三棱锥P-ABD的体积是三棱锥M-PBD体积的3倍时,求$\frac{PM}{MC}$的值.

查看答案和解析>>

同步练习册答案