精英家教网 > 高中数学 > 题目详情

计数原理中学过两种方法:加法与乘法原理,但是在解决排列组合过程中发现有些计数问题中会出现除法,这是何故呢?

答案:
解析:

  导思:由此启发我们想到:对于某些比较生疏或困难的问题,可以采用这种补充一个步骤,使它变为已学过的熟悉的问题,反过来再用除法求原问题的解,即原问题+补充一个步骤=熟悉的问题,若原问题方法数为x,补充步骤的方法数为y,熟悉的问题方法数为z,根据乘法原理:x·y=z,所以x=,即原问题的方法数=

  探究:其实在组合数的计算中就出现了除法:.这是因为把组合问题补充上一个排序步骤后,就变成了排列问题.根据分步乘法计数法·,所以


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知集合A,B满足A∪B={0,1},试分别用分类计数原理、分步计数原理两种方法求出A,B的组数.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,对一个量用两种方法分别算一次,由结果相同可以构造等式,这是一种非常有用的思想方法--“算两次”(G.Fubini原理),如小学有列方程解应用题,中学有等积法求高…
请结合二项式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
证明:
(1)
n
r=0
(
C
r
n
)2=
C
n
2n
;  
(2)
m
r=0
(
C
r
n
C
m-r
n
)=
C
m
2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合A,B满足A∪B={0,1},试分别用分类计数原理、分步计数原理两种方法求出A,B的组数.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省南通市教研室高考数学全真模拟试卷(二)(解析版) 题型:解答题

我们知道,对一个量用两种方法分别算一次,由结果相同可以构造等式,这是一种非常有用的思想方法--“算两次”(G.Fubini原理),如小学有列方程解应用题,中学有等积法求高…
请结合二项式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
证明:
(1);  
(2)

查看答案和解析>>

同步练习册答案