【题目】已知:已知函数
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;
(Ⅱ)若a=1,求f(x)的极值;
【答案】(1)-2; (2)极小值为,极大值为.
【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;
(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.
详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,
曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,
2a﹣2=﹣6,a=﹣2
(Ⅱ)当a=1时, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)
x | (﹣∞,﹣1) | ﹣1 | (﹣1,2) | 2 | (2,+∞) |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 单调减 |
| 单调增 |
| 单调减 |
所以f(x)的极大值为 ,f(x)的极小值为 .
科目:高中数学 来源: 题型:
【题目】候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量M之间的关系为:,(其中a,b是实数),据统计,该种鸟类在静止的时间其耗氧量为45个单位,而其耗氧量为105个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC= .
(1)求证:B1C1∥平面BCD1;
(2)求证:平面A1ABB1⊥平面BCD1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xex﹣ax2(a∈R).
(1)若函数g(x)= 是奇函数,求实数a的值;
(2)若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点. ①求k与b的值;
②对(0,+∞)上的任意实数x1 , x2 , 都有[f(x1)﹣h(x1)][f(x2)﹣h(x2)]>0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: =1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1 , 直线OM的斜率为k2 , k1k2=﹣ .
(1)求椭圆C的离心率;
(2)设直线l与x轴交于点D(﹣ ,0),且满足 =2 ,当△OPQ的面积最大时,求椭圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com