精英家教网 > 高中数学 > 题目详情

【题目】已知:已知函数

Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;

Ⅱ)若a=1,求f(x)的极值;

【答案】(1)-2; (2)极小值为极大值为.

【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;

(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.

详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,

曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,

2a﹣2=﹣6,a=﹣2

Ⅱ)当a=1时, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)

x

(﹣∞,﹣1)

﹣1

(﹣1,2)

2

(2,+∞)

f′(x)

0

+

0

f(x)

单调减

单调增

单调减

所以f(x)的极大值为 ,f(x)的极小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+2|x+1|的最小值为m.
(1)求m的值;
(2)若a、b、c∈R, +c2=m,求c(a+b)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量M之间的关系为:(其中a,b是实数),据统计,该种鸟类在静止的时间其耗氧量为45个单位,而其耗氧量为105个单位时,其飞行速度为1m/s.

(1)求出ab的值;

(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)xa2-1=0,a∈R},若BA,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(2x+ )的图象向左平移φ(φ>0)个单位后,恰好得到函数的y=sin2x的图象,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC=
(1)求证:B1C1∥平面BCD1
(2)求证:平面A1ABB1⊥平面BCD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣ax2(a∈R).
(1)若函数g(x)= 是奇函数,求实数a的值;
(2)若对任意的实数a,函数h(x)=kx+b(k,b为实常数)的图象与函数f(x)的图象总相切于一个定点. ①求k与b的值;
②对(0,+∞)上的任意实数x1 , x2 , 都有[f(x1)﹣h(x1)][f(x2)﹣h(x2)]>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1 , 直线OM的斜率为k2 , k1k2=﹣
(1)求椭圆C的离心率;
(2)设直线l与x轴交于点D(﹣ ,0),且满足 =2 ,当△OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

同步练习册答案