精英家教网 > 高中数学 > 题目详情

某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:
(1)要使工厂有盈利,产品数量x应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?

(1)大于300台小于1050台; (2) 600台

解析试题分析:(1) 由于销售收入是一个关于产品数量x的一个分段函数,另外计算工厂的盈利需要将销售收入r(x)减去总的成本g(x)万元,所以在两段函数中分别求出盈利大于零的时候产品数量的范围,及可求得结论.
(2)通过二次函数的最值的求法即可得到盈利最大值时对应的产品数x的值,本小题单位的转化也是易错点.
试题解析:依题意得,设利润函数为,则
所以 (1)要使工厂有盈利,则有f(x)>0,因为
f(x)>0?

,   即
所以要使工厂盈利,产品数量应控制在大于300台小于1050台的范围内
(2)当时,
故当x=6时,f(x)有最大值4.5.而当x>7时,.
所以当工厂生产600台产品时,盈利最大.
考点:1.分段函数的应用.2.函数的最值.3.实际问题的构建数学模型解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设f(x)=|lg x|,a,b为实数,且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b满足f(a)=f(b)=2f
求证:a·b=1,>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对定义域分别是Df,Dg的函数y=f(x),y=g(x),规定:函数h(x)=
(1)若函数f(x)=,g(x)=x2,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.
(1)对任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范围.
(3)对任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex,x∈R.
(1)若直线y=kx+1与f(x)的反函数的图像相切,求实数k的值;
(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=
(1)若x<a时,f(x)<1恒成立,求a的取值范围;
(2)若a≥-4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x).当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x-1 450(万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的),存在,使得,则称具有性质.
(1)已知函数,判断是否具有性质,并说明理由;
(2)已知函数 若具有性质,求的最大值;
(3)若函数的定义域为,且的图象连续不间断,又满足
求证:对任意,函数具有性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.

查看答案和解析>>

同步练习册答案