精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F是线段PB上一点,,点E在线段AB上,且EF⊥PB.
(Ⅰ)证明:PB⊥平面CEF;
(Ⅱ)求二面角B—CE—F的正弦值
(Ⅰ)略
(Ⅱ)二面角B—CE—F的正弦值是
(I)证明:∵ 
……2分
∴ PB边上的高=,……4分
又∵, ∴……6分
又EF⊥PB , ∴ PB⊥平面CEF ……8分
(2)∵PB⊥平面CEF且平面CEF ∴
  ∴
又∵,  ∴ , ∵
∴PA⊥平面ABC,由平面ABC, ∴
, ∴平面 ……11分
平面PAB, ∴,故∠FEB是二面角B—CE—F的平面角……12分
∵EF⊥PB, PB⊥AB ∴……14分
二面角B—CE—F的正弦值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 如图,在三棱锥中,的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
如图,在多面体中,四边形是正方形,
.
(1)求二面角的正切值;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,E是CD的中点,PA底面ABCD,PA=4
(1)证明:若F是棱PB的中点,求证:EF//平面PAD;
(2)求平面PAD和平面PBE所成二面角(锐角)的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分) 如图,在四棱锥中,底面是边长为的正方形,侧面,且,若分别为的中点.
(1)求证:∥平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在四棱锥中,底面是菱形,平面
分别为的中点,
(I)证明:平面
(II)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,下列命题正确的是(    )
A.若,且,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

教室内有一把尺子,无论怎样放置,地面上总有这样的直线与该直尺所在直线(   ).
A.平B.垂直C.相交但不垂直D.异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条直线,是两个平面,则下列命题中错误的是            (   )
A.若B.若
C.若D.若

查看答案和解析>>

同步练习册答案