精英家教网 > 高中数学 > 题目详情
(8分) 如图,在四棱锥中,底面是边长为的正方形,侧面,且,若分别为的中点.
(1)求证:∥平面
(2)求证:平面平面.
证明:(1)连结AC,则的中点,在△中,EF∥PA,     
且PA平面PAD,EF平面PAD,
∴EF∥平面PAD                             
证明:(2)因为平面PAD⊥平面ABCD, 平面PAD∩平面ABCD=AD,
又CD⊥AD,所以,CD⊥平面PAD,∴CD⊥PA      
又PA=PD=AD,所以△PAD是等腰直角三角形,
,即PA⊥PD     
又CD∩PD=D, ∴ PA⊥平面PDC,
又PA平面PAD,
所以 平面PAD⊥平面PDC     
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)在四棱锥中,底面是矩形,平面. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面      
(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,四棱锥的底面是正方形,每条侧棱长都是底面边长的倍,P为侧棱SD上的点。
(1)若,求二面角的大小;

(2)在侧棱SC上是否存在一点E,使得,若存在,求的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l4分)如图,边长为的正方体中,的中点,在线段上,且
(1)求异面直线所成角的余弦值;
(2)证明:
(3)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F是线段PB上一点,,点E在线段AB上,且EF⊥PB.
(Ⅰ)证明:PB⊥平面CEF;
(Ⅱ)求二面角B—CE—F的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形为矩形,分别是线段
的中点,平面(1)求证:
(2)设点上,且平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,为棱的中点,则在平面内过点且与直线角的直线有(  )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分),
如图,菱形ABCD所在平面与矩形ACEF所在平面互相垂直,已知BD=AF,且点M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求平面DEF与平面BEF所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱锥P—ABC中,D、E分别为PA、AC的中点,则△BDE不可能是 (   )
A.等腰三角形     B.等边三角形     C.直角三角形     D.钝角三角形

查看答案和解析>>

同步练习册答案