精英家教网 > 高中数学 > 题目详情
20.已知函数y=acos(2x+$\frac{π}{3}$)+3,x∈[0,$\frac{π}{2}$]的最大值为4,求实数a的值.

分析 由条件利用余弦函数的定义域和值域,可得-1≤cos(2x+$\frac{π}{3}$)≤$\frac{1}{2}$.再分类讨论,根据函数的最大值为4,求得实数a的值.

解答 解:∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴-1≤cos(2x+$\frac{π}{3}$)≤$\frac{1}{2}$.
当a>0,故当cos(2x+$\frac{π}{3}$)=$\frac{1}{2}$时,y取得最大值$\frac{1}{2}$a+3.
∴$\frac{1}{2}$a+3=4,∴a=2.
当a<0,当cos(2x+$\frac{π}{3}$)=-1 时,y取得最大值为-a+3=4,
∴a=-1,
综上可知,实数a的值为2或-1.

点评 本题主要考查余弦函数的定义域和值域,余弦函数的单调性,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.四边形OABC中,$\overrightarrow{CB}=\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OC}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{\overrightarrow a}{2}-\overrightarrow b$C.$\overrightarrow b+\frac{\overrightarrow a}{2}$D.$\overrightarrow b-\frac{1}{2}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosx+siny=$\frac{1}{2}$,求z=asiny+cos2x,(a∈R)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四边形ABCD中,∠DAB与∠DCB互补,AB=1,CD=DA=2,对角线BD=$\sqrt{7}$,
(1)求BC;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=(x-1)n+(2-x)n(1<x<2,n∈N*)的最小值为an
(1)求an
(2)记bn=$\frac{1}{{{a_n}+{{(\frac{3}{4})}^{n-1}}}}$,求证:${b_1}+{b_2}+…+{b_n}<{(\frac{8}{5})^n}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若三次函数f(x)=ax3+x在区间(-∞,+∞)内是增函数,则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生1015[25
合计302050
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
则根据以下参考公式可得随机变量K2的值(保留三位小数),你认为有多大的把握认为喜爱打篮球与性别有关.(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.甲船在某港口的东50km,北30km处,乙船在同一港口的东14km,南18km处,那么甲、乙两船的距离是60km.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=-n2+2n+1.
(1)求{an}的通项公式;
(2)若等差数列{an}的前n项和Sn=An2+Bn+C(A,B,C为常数),则常数A,B,C必满足何条件?

查看答案和解析>>

同步练习册答案