【题目】记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通项公式;
(2)求Sn , 并判断Sn+1 , Sn , Sn+2是否能成等差数列.
【答案】
(1)
解:设等比数列{an}首项为a1,公比为q,
则a3=S3﹣S2=﹣6﹣2=﹣8,则a1= = ,a2= = ,
由a1+a2=2, + =2,整理得:q2+4q+4=0,解得:q=﹣2,
则a1=﹣2,an=(﹣2)(﹣2)n﹣1=(﹣2)n,
∴{an}的通项公式an=(﹣2)n;
(2)
由(1)可知:Sn= = =﹣ (2+(﹣2)n+1),
则Sn+1=﹣ (2+(﹣2)n+2),Sn+2=﹣ (2+(﹣2)n+3),
由Sn+1+Sn+2=﹣ (2+(﹣2)n+2)﹣ (2+(﹣2)n+3)=﹣ [4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],
=﹣ [4+2(﹣2)n+1]=2×[﹣ (2+(﹣2)n+1)],
=2Sn,
即Sn+1+Sn+2=2Sn,
∴Sn+1,Sn,Sn+2成等差数列.
【解析】(1.)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1= = ,a2= = ,由a1+a2=2,列方程即可求得q及a1 , 根据等比数列通项公式,即可求得{an}的通项公式;
(2.)由(1)可知.利用等比数列前n项和公式,即可求得Sn , 分别求得Sn+1 , Sn+2 , 显然Sn+1+Sn+2=2Sn , 则Sn+1 , Sn , Sn+2成等差数列.
【考点精析】本题主要考查了等比数列的通项公式(及其变式)和等比数列的前n项和公式的相关知识点,需要掌握通项公式:;前项和公式:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,空间四边形ABCD的两条对棱AC,BD互相垂直,AC,BD的长分别为8和2,则平行四边形两条对棱的截面四边形EFGH在平移过程中,面积的最大值是_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:
①“”是“”的充要条件;
②“”是“一元二次不等式的解集为R”的充要条件;
③“”是“直线平行于直线”的充分不必要条件;
④“”是“”的必要不充分条件.
其中真命题的序号为____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:(12分)
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得 = xi=9.97,s= = =0.212, ≈18.439, (xi﹣ )(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi , i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在( ﹣3s, +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在( ﹣3s, +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi , yi)(i=1,2,…,n)的相关系数r= , ≈0.09.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为
(1)求曲线C的方程。
(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近日,某公司对其生产的一款产品进行促销活动,经测算该产品的销售量P(单位:万件)与促销费用x(单位:万元)满足函数关系:p=3﹣ (其中0≤x≤a,a为正常数).已知生产该产品件数为P(单位:万件)时,还需投入成本10+2P(单位:万元)(不含促销费用),产品的销售价格定为(4+ )元/件,假定生产量与销售量相等.
(1)将该产品的利润y(单位:万元)表示为促销费用x(单位:万元)的函数;
(2)促销费用x(单位:万元)是多少时,该产品的利润y(单位:万元)取最大值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com