精英家教网 > 高中数学 > 题目详情

【题目】求下列函数的解析式:

(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);

(2)已知3f(x)+2f(-x)=x+3,求f(x).

【答案】(1);(2)

【解析】

(1)设二次函数为,将代入化简,可求得的值.(2)将代入原方程得到一个新的方程,和原方程组成方程组,解方程组来求得的值.

(1)设f(x)=ax2+bx+c(a≠0),

由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,

得恒等式2ax+a+b=x-1,得a=,b=-.

故所求函数的解析式为f(x)=x2x+2.

(2)由3f(x)+2f(-x)=x+3,①

x用-x代换得3f(-x)+2f(x)=-x+3,②

解①②得f(x)=x+.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.

(Ⅰ)求抛物线方程;

(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行。作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间[25,85]上,年龄的频率分布及了解《民法总则》的人数如下表:

年龄

[2535)

[3545)

[4555)

[5565)

[6575)

[7585)

频数

5

5

10

15

5

10

了解《民法总则》

1

2

8

12

4

5

(Ⅰ)填写下面2×2 列联表,并判断是否有99%的把握认为以45岁为分界点对了解《民法总则》政策有差异;

(Ⅱ)若对年龄在[45,55),[65,75)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为1的动圆与定圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是(  )

A. (x-5)2+(y+7)2=25

B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15

C. (x-5)2+(y+7)2=9

D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验

费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

(1)讨论函数的单调性;

(2)若处取得极大值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,向量共线的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为 (参考数据:)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面ABCD为直角梯形,,点EAD的中点,平面ABCD,且

求证:

线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案