精英家教网 > 高中数学 > 题目详情

函数y=ln数学公式的图象大致为


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:化简函数的解析式为ln(1-),求出它的定义域为(0,+∞),y<0,且y是(0,+∞)上的增函数,结合所给的选项,得出结论.
解答:∵函数y=ln=ln=ln(1-),由 1->0 可得x>0,
故函数的定义域为(0,+∞).
再由 0<1-<1,可得 y<0,且y是(0,+∞)上的增函数,
故选C.
点评:本题主要考查函数的图象特征,函数的定义域和单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)设函数f(x)=ln(x+a)-x2
(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).
(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.
(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)-x2
(Ⅰ)当a=0时,求f(x)在(0,e]上的最大值;
(Ⅱ)若f(x)在区间[1,2]上为减函数,求a的取值范围;
(Ⅲ)是否存在实数a,使直线y=x为函数f(x)的图象的一条切线,若存在,求a的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:河北省衡水中学2012届高三第四次调研考试数学理科试题 题型:044

设函数f(x)=ln(x+a)-x2

(1)若a=0,求f(x)在(0,m](m>0)上的最大值g(m).

(2)若f(x)在区间[1,2]上为减函数,求a的取值范围.

(3)若直线y=x为函数f(x)的图象的一条切线,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011年山东省枣庄市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=lnx-ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x,y)(x∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x=时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案