精英家教网 > 高中数学 > 题目详情

如图所示,正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1上的点,则B1D1与AE所成的角


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
D
分析:根据正方体的身体特征,我们可得B1D1⊥AC,且B1D1⊥EC,进而根据线面垂直的判定定理可得,B1D1⊥平面ACE,进而根据线面垂直的性质得到B1D1⊥AE.
解答:根据正方体的几何特征,我可得:
B1D1⊥AC,且B1D1⊥EC
又由AC∩EC=C
∴B1D1⊥平面ACE
又由AE?平面ACE
∴B1D1⊥AE
即B1D1与AE所成的角为90°
故选D.
点评:本题考查的知识点是异面直线及其所成的角,其中根据线面垂直的判定定理及线面垂直的性质判断出B1D1⊥AE是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是正方体ADD1A1和ABCD的中心,G是C1C的中点,设GF、C1F与AB所成的角分别为α、β,则α+β等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCDA1B1C1D1的棱长为1,点MAB上,且AMAB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修2 1.2点 线 面之间的位置关系练习卷(解析版) 题型:解答题

(12分)如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.

 

查看答案和解析>>

同步练习册答案