精英家教网 > 高中数学 > 题目详情
设函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最值.
(Ⅰ)的单调递增区间为, 单调递减区间为;(Ⅱ)函数在区间上的最大值为 ,最小值为 .

试题分析:(Ⅰ)求函数的单调区间,它的解题方法有两种:一是利用定义,二是导数法,本题由于是三次函数,可用导数法求单调区间,只需求出的导函数,判断的导函数的符号,从而求出的单调区间;(Ⅱ)求函数在区间上的最值,求在区间上的最大值,此题属于函数在闭区间上的最值问题,解此类题,只需求出极值,与端点处的函数值,比较谁大,就取谁,本题比较简单,属于送分题.
试题解析:(Ⅰ) ,  令    
的变化情况如下表:








0

0


单调递增
极大值
单调递减
极小值
单调递增
由上表可知的单调递增区间为, 单调递减区间为
(Ⅱ)由(Ⅰ)可知函数 在 上单调递增,在 上单调递减,在 上单调递增, 的极大值  , 的极小值  
 ,    函数在区间上的最大值为 ,最小值为 .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)设,若上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试讨论的单调性;
(2)若对,总使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)求函数的单调区间;
(3)若关于的方程有实数解,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=x3-4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(   )
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

处有极大值,则常数的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

=上是减函数,则的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的导函数则函数的单调递减区间是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案