精英家教网 > 高中数学 > 题目详情

如图,在正△ABC中,点DE分别在边BCAC上,且BDBCCECAADBE相交于点P,求证:
 
(1)PDCE四点共圆;
(2)APCP.

(1)见解析(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,求PC和CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙为四边形的外接圆,且延长线上一点,直线与圆相切.

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点.

(1)求证(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线CD交AE于点F,交AB于点D.

(1)求∠ADF的度数;
(2)若AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.证明:
 
(1)∠FEB=∠CEB
(2)EF2AD·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,E是⊙O内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切⊙O于G.求证:

(1)△DFE∽△EFA;
(2)EF=FG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC.

(1)求证:∠P=∠EDF;
(2)求证:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四点在同一圆上,的延长线交于点,点的延长线上.

(1)若,求的值;
(2)若,证明:.

查看答案和解析>>

同步练习册答案