精英家教网 > 高中数学 > 题目详情
12.已知等比数列{an}为递增数列,且a52=a10,2(an+an-2)=5an-1,求数列{an}的通项公式.

分析 利用等比数列的通项公式及其单调性即可得出.

解答 解:设等比数列{an}的公比为q.
∵a52=a10,2(an+an-2)=5an-1
∴${a}_{1}^{2}{q}^{8}$=${a}_{1}{q}^{9}$,$2({a}_{n-2}{q}^{2}+{a}_{n-2})$=5an-2q,
化为a1=q,2q2-5q+2=0,
解得a1=q=2,$\frac{1}{2}$,
∵等比数列{an}为递增数列,
∴故q=2.
∴${a}_{n}=2×{2}^{n-1}$=2n

点评 本题考查了等比数列的通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=excosx-xsinx,g(x)=sinx-$\sqrt{2}$ex,其中e为自然对数的底数.
(1)?x1∈[-$\frac{π}{2}$,0],?x2∈[0,$\frac{π}{2}$],使得不等式f(x1)≤m+g(x2)成立,试求实数m的取值范围;
(2)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,且b+c=acosC+$\sqrt{3}$asinC.
(1)求A;
(2)若$\overrightarrow{AC}$•$\overrightarrow{AB}$=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数y=f(x)的定义域是[0,4],则函数g(x)=$\frac{f(4x)}{lnx}$的定义域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x2,则f(x+1)=x2+2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的通项公式an=$\frac{64-4n}{5}$,设An=|an+an+1+…+an+12|(n∈N*),当An取得最小值时,n的取值是(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在下列函数中,图象关于原点对称的是(  )
A.y=xsinxB.y=$\frac{{e}^{x}+{e}^{-x}}{2}$C.y=xlnxD.y=x3-2sinx+tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=2,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,Sn是其前n项和,则S2015=(  )
A.$\frac{2011}{2}$B.1009C.1007D.$\frac{2017}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合N={x|x2-3x+2=0}等于(  )
A.{(1,2)}B.{1,2}C.D.1,2

查看答案和解析>>

同步练习册答案