精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax2+b(x∈R),其中a≠0,b∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设a∈[
1
2
3
4
],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M-m的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)对于含参数的函数f(x)的单调区间的求法,需要进行分类讨论,然后利用导数求出函数的单调性;
(Ⅱ)求出f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,设 g(a)=4a3-12a+8,求出g(a)在[
1
2
3
4
]内是减函数,问题得以解决.
解答: 解:(Ⅰ)f'(x)=3x2-6ax=3x(x-2a),令f'(x)=0,则x1=0,x2=2a,
(1)当a>0时,0<2a,当x变化时,f'(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,2a) 2a (2a,+∞)
f'(x) + 0 - 0 +
f(x) 极大值 极小值
∴函数f(x)在区间(-∞,0)和(2a,+∞)内是增函数,在区间(0,2a)内是减函数.
(2)当a<0时,2a<0,当x变化时,f'(x),f(x)的变化情况如下表:
x (-∞,2a) 2a (2a,0) 0 (0,+∞)
f'(x) + 0 - 0 +
f(x) 极大值 极小值
∴函数f(x)在区间(-∞,2a)和(0,+∞)内是增函数,在区间(2a,0)内是减函数.
(Ⅱ)由
1
2
≤a≤
3
4
及(Ⅰ),f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,
又f(2)-f(1)=(8-12a+b)-(1-3a+b)=7-9a>0,
∴M=f(2),m=f(2a)=8a3-12a3+b=b-4a3
∴M-m=(8-12a+b)-(b-4a3)=4a3-12a+8,
设 g(a)=4a3-12a+8,
∴g'(a)=12a2-12=12(a+1)(a-1)<0(a∈[
1
2
3
4
]),
∴g(a)在[
1
2
3
4
]内是减函数,
故 g(a)max=g(
1
2
)=2+
1
2
=
5
2
,g(a)min=g(
3
4
)=-1+4×
33
42
=
11
16

11
16
≤M-m≤
5
2
点评:本题考查利用导数研究函数的极值和单调性,涉及构造函数的方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个三角形数表按如下方式构成(如图:其中项数n≥5):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:f(2,1)=f(1,1)+f(1,2);f(i,j)为数表中第i行的第j个数.
(1)求第2行和第3行的通项公式f(2,j)和f(3,j);
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求f(i,1)关于i(i=1,2,…,n)的表达式;
(3)若f(i,1)=(i+1)(ai-1),bi=
1
aiai+1
,试求一个等比数列g(i)(i=1,2,…,n),使得Sn=b1g(1)+b22g(2)+…+bng(n)<
1
3
,且对于任意的m∈(
1
4
1
3
)均存在实数λ,当n>λ时,都有Sn>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1.若D为B1C1的中点,求直线AD与平面A1BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点分别为F1(-
3
,0),F2
3
,0),短轴的两个端点分别为B1,B2;且△F1B1B2为等腰直角三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C交于点M,N,且OM⊥ON,试证明直线l与圆x2+y2=2相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)上有一点P到它的两个焦点的距离之差为8,一条渐近线的倾斜角为arctan
3
4
,设p为双曲线上一点,过P作一条渐近线的平行线交另一条渐近线于点M,求三角形OPM的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是圆M:(x+1)2+y2=16上一点,点F(1,0),线段PF的垂直平分线和圆M的半径MP相交于点Q.
(1)当点P在圆上运动时,求点Q的轨迹C的方程;
(2)若直线x=my-1交轨迹C于A、B两点,求△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-a|(x∈R,a为实数).
(1)讨论函数f(x)的奇偶性;
(2)设a>
1
2
,求函数f(x)的最小值;
(3)设a>0,g(x)=
f(x)
x
,x∈(0,a],若g(x)在区间(0,a]上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
cos(x+
π
4
),x∈R.
(1)求函数f(x)的最小正周期和值域;
(2)若θ∈(0,
π
2
),且f(θ)=
1
2
,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),其中0<θ<π,若
a
b
,则θ=
 

查看答案和解析>>

同步练习册答案