【题目】如图,在△ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;类似地有命题:在三棱锥A-BCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有S=S△BCM·S△BCD.上述命题是 ( )
A. 真命题
B. 增加条件“AB⊥AC”才是真命题
C. 增加条件“M为△BCD的垂心”才是真命题
D. 增加条件“三棱锥A-BCD是正三棱锥”才是真命题
科目:高中数学 来源: 题型:
【题目】已知二次函数,满足,.
(1)求函数的解析式;
(2)若关于的不等式在上有解,求实数的取值范围;
(3)若函数的两个零点分别在区间和内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a-.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M(x1,y1)是椭圆=1(a>b>0)上任意一点,F为椭圆的右焦点.
(1)若椭圆的离心率为e,试用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直线m与圆x2+y2=b2相切,并与椭圆交于A、B两点,且直线m与圆的切点Q在y轴右侧,若a=4,求△ABF的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的右顶点、上顶点分别为、,坐标原点到直线的距离为,且,则椭圆的方程为( )
A. B. C. D.
【答案】D
【解析】
写出直线的方程,利用原点到直线的距离,以及列方程组,解方程组求得的值,进而求得椭圆的方程.
椭圆右顶点坐标为,上顶点坐标为,故直线的方程为,即,依题意原点到直线的距离为,且,由此解得,故椭圆的方程为,故选D.
【点睛】
本小题主要考查过两点的直线方程,考查点到直线的距离公式,考查椭圆标准方程的求法,考查了方程的思想.属于中档题.
【题型】单选题
【结束】
11
【题目】若实数,满足,则的最小值是( )
A. 0 B. C. -6 D. -3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内动点到两定点和的距离之和为4.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)已知直线和的倾斜角均为,直线过坐标原点且与曲线相交于, 两点,直线过点且与曲线是交于, 两点,求证:对任意, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com