精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,在正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,平面BED1交棱AA1于点F.则下列命题中假命题是(  )
分析:当E为CC1的中点时,则F也为AA1的中点,可证A1C1∥平面BED1F,判断A是真命题;
用反证法证明不存在点E,使得B1D⊥平面BED1F,判断B是假命题;
根据对于任意的点E,都有BD1⊥平面A1C1D,判断C是真命题;
根据VB1-BED1F=VE-BB1D1+VF-BB1D1,而两个三棱锥的体积为定值,判断D是真命题.
解答:解:对A,当E为CC1的中点时,则F也为AA1的中点,∴EF∥A1C1,∴A1C1∥平面BED1F;故A为真命题;
对B,假设B1D⊥平面BED1F,则B1D在平面BCC1B1和平面ABB1A1上的射影B1C,B1A分别与BE,BF垂直,
可得E与C1重合,F与A1重合,而B,A1,C1,D1四点不共面,∴不存在这样的点E,故B为假命题你;
对C,∵BD1⊥平面A1C1D,BD1?平面BED1F,∴平面A1C1D⊥平面BED1F,故C是真命题;
对D,∵VB1-BED1F=VE-BB1D1+VF-BB1D1,∵CC1∥AA1∥平面BB1D1,∴四棱锥B1-BED1F的体积为定值,故D是真命题;
故选B.
点评:本题考查了空间中直线与平面的平行,垂直关系及棱锥的体积计算,解答的关键是熟练掌握线面垂直的性质定理与判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点
(1)若F为AA1的中点,求证:EF∥面DD1C1C;
(2)若F为AA1的中点,求二面角A-EC-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、如图所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝山区二模)如图所示,在正方体ABCD-A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为(  )

查看答案和解析>>

同步练习册答案