精英家教网 > 高中数学 > 题目详情
4.过圆锥高的中点作平行于底面的截面,该截面把圆锥侧面分成的上下两部分的面积之比为1:3.

分析 设原圆锥侧面展开扇形的半径为R,圆心角的度数为n°,可得AP=$\frac{1}{2}$AC=$\frac{1}{2}$R,根据扇形的面积公式求得大小圆锥的侧面面积后比较,即可得到圆锥的侧面积与所得圆台的侧面积之比

解答 解:如图所示,设原圆锥侧面展开扇形的半径为R,圆心角的度数为n°.

∴小扇形的半径AP=$\frac{1}{2}$AC=$\frac{1}{2}$R,
设小扇形的面积为S1,大扇形的面积为S2
于是S1=$\frac{n{π(\frac{1}{2}R)}^{2}}{360}$=$\frac{1}{4}$•$\frac{n{πR}^{2}}{360}$,
S2=$\frac{n{πR}^{2}}{360}$,
∴S1=$\frac{1}{4}$S2
圆锥的侧面积与所得圆台的侧面积之比为 1:3.
故答案为;1:3.

点评 本题是基础题,考查圆锥的侧面积与所得圆台的侧面积的求法,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知A={x|x2-2x-3≤0},$B=\left\{{y\left|{y=}\right.}\right.\left.{\sqrt{{x^2}+3}}\right\}$,则A∩B=(  )
A.$[{1,\sqrt{2}}]$B.$[{\sqrt{2},\sqrt{3}}]$C.$[{\sqrt{3},3}]$D.$[{2,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=a+\frac{1}{{{2^x}+1}}$.
(1)当函数f(x)为奇函数时,求a的值;
(2)判断函数f(x)在区间(-∞,+∞)上是增函数还是减函数,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{1}{1+tanα}-\frac{1}{1-tanα}$=tan2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}前n项和为Sn,满足${S_n}=2{a_n}-2n(n∈{N^*})$
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=log2an+2,Tn为数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=log2x,当x∈[1,4]时,函数f(x)的值域是(  )
A.[0,1]B.[0,2]C.[1,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=xα的图象过点(2,4),则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:$\sqrt{2}ρsin(θ-\frac{π}{4})=2$,曲线C的参数方程为:$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α为参数)
(Ⅰ)写出直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α=$\frac{7π}{5}$,则角α的终边位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案