精英家教网 > 高中数学 > 题目详情

设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m 同余.记为a≡b(mod m).已知a=2+C数学公式+C数学公式•2+C数学公式•22+…+C数学公式•219,b≡a(mon 10),则b的值可以是


  1. A.
    2015
  2. B.
    2012
  3. C.
    2008
  4. D.
    2006
B
分析:根据已知中a和b对模m同余的定义,结合二项式定理,我们可以求出a的值,结合a≡b(bmod10),比较四个答案中的数字,结合得到答案.
解答:∵已知a=2++•2+•22 +…+•219
=+•2+•22+•23+…+•220 )+
=•(1+2)20+=•320+
∵31个位是3,32个位是9,33个位是7,34个位是1,35个位是3,…
∴320个位是1,故a=•320+ 的个位数是2.
又∵b≡a(bmod10),
∴b的个位也是2,结合所给的选项,
故选B.
点评:本题考查的知识点是同余定理,其中正确理解a和b对模m同余,是解答本题的关键,同时利用二项式定理求出a的值,也很关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余,记作a≡b(bmodm),已知a=1+C201+2C202+…+219C2020,且a≡b(bmod10),则b的值可为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为a≡b(bmodm).已知a=1+
C
1
10
+
C
2
10
•2
+
C
3
10
22+…+
C
10
10
29
,b≡a(bmod10),则b的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵溪市模拟)设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a和b对m同余,记为a=b(bmodm),已知a=1+C201+C2022+C20322+…+C2020219,b=a(bmod10),则b的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m 同余.记为a≡b(mod m).已知a=2+C
 
1
20
+C
 
2
20
•2+C
 
3
20
•22+…+C
 
20
20
•219,b≡a(mon 10),则b的值可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

abm为整数(m>0),若abm除得的余数相同,则称ab对模m同余.记为ab(mod m).已知a=1+C+C·2+C·22+…+C·219ba(mod 10),则b的值可以是 

A.2015           B.2011          C.2008            D.2006

查看答案和解析>>

同步练习册答案