精英家教网 > 高中数学 > 题目详情

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

(1)详见解析;(2).

解析试题分析:(1)由的中点,连结交于,从而得到中点,再由三角形中位线知识得到线线平行,从而得到平面;(2) 过,连结.再根据已知条件证明平面.与平面的所成角的平面角.再解直角三角形,得到.
试题解析:(1)连结交于,连 中点,中点,
平面平面平面.     (6分)
(2)过,连结,               (7分)
平面平面
平面
平面平面
平面平面在平面内的射影,
与平面的所成角的平面角,又平面为直角三角形,,且. (12分)
考点:1.线面平行的判定定理;2.线面垂直的判定定理;3.直线与平面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.

(1)求证:PQ//平面BCE;
(2)求证:AM平面ADF;
(3)求二面角A-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,ADC-900,AB=AD=PD=1.CD=2.

(I)求证:BC平面PBD:
(II)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角
E-BD-P的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图三棱锥中,是等边三角形.

(Ⅰ)求证:
(Ⅱ)若二面角 的大小为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥,底面是平行四边形,点在平面上的射影边上,且

(Ⅰ)设的中点,求异面直线所成角的余弦值;
(Ⅱ)设点在棱上,且.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,

(Ⅰ)求证:平面
(Ⅱ)若的中点,求与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1.

(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABD-A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角梯形中,,过,垂足为.分别是的中点.现将沿折起,使二面角的平面角为.

(1)求证:平面平面
(2)求直线与面所成角的正弦值.

查看答案和解析>>

同步练习册答案