【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若,求当下潜速度取什么值时,总用氧量最少.
科目:高中数学 来源: 题型:
【题目】某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知,历年中日泄流量在区间[30,60)
的年平均天数为156,一年按364天计.
(Ⅰ)请把频率分布直方图补充完整;
(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这两族人数占各自小区总人数的比例如下:
A小区 | 低碳族 | 非低碳族 |
比例 |
B小区 | 低碳族 | 非低碳族 |
比例 |
C小区 | 低碳族 | 非低碳族 |
比例 |
(1)从A,B,C三个社区中各选一人,求恰好有2人是低碳族的概率;
(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线与轴的一个交点的坐标为,经过点作斜率为1的直线, 交曲线于两点,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数),现随机抽取20天的指数(见下表),将指数不低于视为当天空气质量优良.
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空气质量指数 |
天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空气质量指数 |
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用表示抽到空气质量为优良的天数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列和的项数均为,则将数列和的距离定义为.
(1)求数列1,3,5,6和数列2,3,10,7的距离.
(2)记为满足递推关系的所有数列的集合,数列和为中的两个元素,且项数均为.若, ,数列和的距离小于2016,求的最大值.
(3)记是所有7项数列(其中, 或)的集合, ,且中的任何两个元素的距离大于或等于3.求证: 中的元素个数小于或等于16.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A. 种 B. 种 C. 种 D. 种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com