精英家教网 > 高中数学 > 题目详情
(2011•佛山二模)已知平面直角坐标系上的三点A(0,1)、B(-2,0)、C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(θ-
π
4
)的值.
分析:(1)根据A,B及C的坐标,表示出
BA
OC
,利用平面向量平行的坐标表示列出关系式,利用同角三角函数间的基本关系化简即可求出tanθ的值;
(2)由tanθ的值及θ的范围,求出sinθ与cosθ的值,所求式子利用两角和与差的正弦函数公式及特殊角的三角函数值化简,将sinθ与cosθ的值代入计算即可求出值.
解答:解:(1)由题意得:
BA
=(2,1),
OC
=(cosθ,sinθ),
BA
OC
,∴2sinθ-cosθ=0,
∴tanθ=
sinθ
cosθ
=
1
2

(2)∵tanθ=
1
2
>0,θ∈[0,π),∴θ∈(0,
π
2
),
sinθ
cosθ
=
1
2
sin2θ+cos2θ=1
,解得:sinθ=
5
5
,cosθ=
2
5
5

∴sin(θ-
π
4
)=
2
2
(sinθ-cosθ)=-
10
10
点评:此题考查了两角和与差的正弦函数公式,以及平面向量共线(平行)的坐标表示,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•佛山二模)已知函数f(x)=
2x,x≤0
log2x,x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)在正项等比数列{an}中,若a2+a3=2,a4+a5=8,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)设x,y满足约束条件
2x+y-6≥0
x+2y-6≤0
y≥0
,则目标函数z=x+y的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)已知平面直角坐标系上的三点A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•佛山二模)如图,某地一天从6~14时的温度变化曲线近似满足函数:y=Asin(ωx+φ)+B.则中午12点时最接近的温度为(  )

查看答案和解析>>

同步练习册答案